高中數(shù)學(xué)優(yōu)秀教案(通用26篇)
作為一名教學(xué)工作者,時(shí)常需要編寫教案,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對(duì)教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。那么應(yīng)當(dāng)如何寫教案呢?下面是小編為大家整理的高中數(shù)學(xué)優(yōu)秀教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

高中數(shù)學(xué)優(yōu)秀教案 1
一、教材分析
“解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來,并獨(dú)立成為一章。這部分內(nèi)容從知識(shí)體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識(shí)的基礎(chǔ)上,通過對(duì)三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗(yàn)“觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識(shí)。
二、學(xué)情分析
我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對(duì)“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識(shí)和技能還不高。但是,大多數(shù)學(xué)生對(duì)數(shù)學(xué)的'興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯(cuò)的表現(xiàn)。
三、教學(xué)目標(biāo)
1、知識(shí)和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理解決一些簡(jiǎn)單的解三角形問題。
過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對(duì)現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。
情感、態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過實(shí)際問題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動(dòng)性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。
2、教學(xué)重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡(jiǎn)單應(yīng)用。
教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。
四、教學(xué)方法與手段
為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。
五、教學(xué)過程
為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設(shè)計(jì)了這樣的教學(xué)過程:
。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題
問題1:寧?kù)o的夜晚,明月高懸,當(dāng)你仰望夜空,欣賞這美好夜色的時(shí)候,會(huì)不會(huì)想要知道:那遙不可及的月亮離我們究竟有多遠(yuǎn)呢?
1671年兩個(gè)法國(guó)天文學(xué)家首次測(cè)出了地月之間的距離大約為385400km,你知道他們當(dāng)時(shí)是怎樣測(cè)出這個(gè)距離的嗎?
問題2:在現(xiàn)在的高科技時(shí)代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測(cè)出,你知道這是為什么嗎?還有,交通警察是怎樣測(cè)出正在公路上行駛的汽車的速度呢?要想解決這些問題,其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)
[設(shè)計(jì)說明]引用教材本章引言,制造知識(shí)與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識(shí)的興趣。
。ǘ┨厥馊胧郑l(fā)現(xiàn)規(guī)律
問題3:在初中,我們已經(jīng)學(xué)習(xí)了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實(shí)力,請(qǐng)你根據(jù)初中知識(shí),解決這樣一個(gè)問題。在Rt⊿ABC中sinA=,sinB=,sinC=,由此,你能把這個(gè)直角三角形中的所有的邊和角用一個(gè)表達(dá)式表示出來嗎?
引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理。
(三)類比歸納,嚴(yán)格證明
問題4:本題屬于初中問題,而且比較簡(jiǎn)單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當(dāng)一回老師,如果有個(gè)學(xué)生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個(gè)結(jié)論還成立嗎?
[設(shè)計(jì)說明]此時(shí)放手讓學(xué)生自己完成,如果感覺自己解決有困難,學(xué)生也可以前后桌或同桌結(jié)組研究,鼓勵(lì)學(xué)生用不同的方法證明這個(gè)結(jié)論,在巡視的過程中讓不同方法的學(xué)生上黑板展示,如果沒有用向量的學(xué)生,教師引導(dǎo)提示學(xué)生能否用向量完成證明。
高中數(shù)學(xué)優(yōu)秀教案 2
教學(xué)目標(biāo)
(1)了解算法的含義,體會(huì)算法思想。
(2)會(huì)用自然語言和數(shù)學(xué)語言描述簡(jiǎn)單具體問題的算法;
(3)學(xué)習(xí)有條理地、清晰地表達(dá)解決問題的步驟,培養(yǎng)邏輯思維能力與表達(dá)能力。
教學(xué)重難點(diǎn)
重點(diǎn):算法的含義、解二元一次方程組的算法設(shè)計(jì)。
難點(diǎn):把自然語言轉(zhuǎn)化為算法語言。
情境導(dǎo)入
電影《神槍手》中描述的凌靖是一個(gè)天生的狙擊手,他百發(fā)百中,最難打的位置對(duì)他來說也是輕而易舉,是香港警察狙擊手隊(duì)伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務(wù),一般要按步驟完成以下幾步:
第一步:觀察、等待目標(biāo)出現(xiàn)(用望遠(yuǎn)鏡或瞄準(zhǔn)鏡);
第二步:瞄準(zhǔn)目標(biāo);
第三步:計(jì)算(或估測(cè))風(fēng)速、距離、空氣濕度、空氣密度;
第四步:根據(jù)第三步的結(jié)果修正彈著點(diǎn);
第五步:開槍;
第六步:迅速轉(zhuǎn)移(或隱蔽)
以上這種完成狙擊任務(wù)的方法、步驟在數(shù)學(xué)上我們叫算法。
課堂探究
預(yù)習(xí)提升
1、定義:算法可以理解為由基本運(yùn)算及規(guī)定的運(yùn)算順序所構(gòu)成的完整的解題步驟,或者看成按照要求設(shè)計(jì)好的有限的確切的計(jì)算序列,并且這樣的步驟或序列能夠解決一類問題。
2、描述方式
自然語言、數(shù)學(xué)語言、形式語言(算法語言)、框圖。
3、算法的要求
(1)寫出的算法,必須能解決一類問題,且能重復(fù)使用;
(2)算法過程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過有限步后能得出結(jié)果。
4、算法的特征
(1)有限性:一個(gè)算法應(yīng)包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結(jié)束。
(2)確定性:算法的計(jì)算規(guī)則及相應(yīng)的計(jì)算步驟必須是唯一確定的。
(3)可行性:算法中的每一個(gè)步驟都是可以在有限的時(shí)間內(nèi)完成的基本操作,并能得到確定的結(jié)果。
(4)順序性:算法從初始步驟開始,分為若干個(gè)明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個(gè)步驟只有一個(gè)確定的后續(xù)。
(5)不唯一性:解決同一問題的算法可以是不唯一的
課堂典例講練
命題方向1對(duì)算法意義的理解
例1、下列敘述中,
、僦矘湫枰\(yùn)苗、挖坑、栽苗、澆水這些步驟;
②按順序進(jìn)行下列運(yùn)算:1+1=2,2+1=3,3+1=4,…99+1=100;
、蹚那鄭u乘動(dòng)車到濟(jì)南,再?gòu)臐?jì)南乘飛機(jī)到倫敦觀看奧運(yùn)會(huì)開幕式;
、3x>x+1;
⑤求所有能被3整除的正數(shù),即3,6,9,12。
能稱為算法的個(gè)數(shù)為( )
A、2
B、3
C、4
D、5
【解析】根據(jù)算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個(gè)明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾。
【答案】B
[規(guī)律總結(jié)]
1、正確理解算法的概念及其特點(diǎn)是解決問題的關(guān)鍵、
2、針對(duì)判斷語句是否是算法的問題,要看它的.步驟是否是明確的和有效的,而且能在有限步驟之內(nèi)解決這一問題、
【變式訓(xùn)練】下列對(duì)算法的理解不正確的是________
、僖粋(gè)算法應(yīng)包含有限的步驟,而不能是無限的
、谒惴ǹ梢岳斫鉃橛苫具\(yùn)算及規(guī)定的運(yùn)算順序構(gòu)成的完整的解題步驟
、鬯惴ㄖ械拿恳徊蕉紤(yīng)當(dāng)有效地執(zhí)行,并得到確定的結(jié)果
、芤粋(gè)問題只能設(shè)計(jì)出一個(gè)算法
【解析】由算法的有限性指包含的步驟是有限的故①正確;
由算法的明確性是指每一步都是確定的故②正確;
由算法的每一步都是確定的,且每一步都應(yīng)有確定的結(jié)果故③正確;
由對(duì)于同一個(gè)問題可以有不同的算法故④不正確。
【答案】④
命題方向2解方程(組)的算法
例2、給出求解方程組的一個(gè)算法。
[思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計(jì)算機(jī)上實(shí)現(xiàn),我們用高斯消元法(即先將方程組化為一個(gè)三角形方程組,再通過回代方程求出方程組的解)解線性方程組、
[規(guī)范解答]方法一:算法如下:
第一步,①×(-2)+②,得(-2+5)y=-14+11
即方程組可化為
第二步,解方程③,可得y=-1,④
第三步,將④代入①,可得2x-1=7,x=4
第四步,輸出4,-1
方法二:算法如下:
第一步,由①式可以得到y(tǒng)=7-2x,⑤
第二步,把y=7-2x代入②,得x=4
第三步,把x=4代入⑤,得y=-1
第四步,輸出4,-1
[規(guī)律總結(jié)]1、本題用了2種方法求解,對(duì)于問題的求解過程,我們既要強(qiáng)調(diào)對(duì)“通法、通解”的理解,又要強(qiáng)調(diào)對(duì)所學(xué)知識(shí)的靈活運(yùn)用。
2、設(shè)計(jì)算法時(shí),經(jīng)常遇到解方程(組)的問題,一般是按照數(shù)學(xué)上解方程(組)的方法進(jìn)行設(shè)計(jì),但應(yīng)注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時(shí)有幾個(gè)解,然后根據(jù)求解步驟設(shè)計(jì)算法步驟。
【變式訓(xùn)練】
【解】算法如下:S1,①+2×②得5x=1;③
S2,解③得x=;
S3,②-①×2得5y=3;④
S4,解④得y=;
命題方向3篩選問題的算法設(shè)計(jì)
例3、設(shè)計(jì)一個(gè)算法,對(duì)任意3個(gè)整數(shù)a、b、c,求出其中的最小值、
[思路分析]比較a,b比較m與c―→最小數(shù)
[規(guī)范解答]算法步驟如下:
1、比較a與b的大小,若a
2、比較m與c的大小,若m
[規(guī)律總結(jié)]求最小(大)數(shù)就是從中篩選出最小(大)的一個(gè),篩選過程中的每一步都是比較兩個(gè)數(shù)的大小,保證了篩選的可行性,這種方法可以推廣到從多個(gè)不同數(shù)中篩選出滿足要求的一個(gè)。
【變式訓(xùn)練】在下列數(shù)字序列中,寫出搜索89的算法:
21,3,0,9,15,72,89,91,93
[解析]1、先找到序列中的第一個(gè)數(shù)m,m=21;
2、將m與89比較,是否相等,如果相等,則搜索到89;
3、如果m與89不相等,則往下執(zhí)行;
4、繼續(xù)將序列中的其他數(shù)賦給m,重復(fù)第2步,直到搜索到89。
命題方向4非數(shù)值性問題的算法
例4、一個(gè)人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個(gè)人和兩只動(dòng)物,沒有人在的時(shí)候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會(huì)吃掉羚羊。
(1)設(shè)計(jì)安全渡河的算法;
(2)思考每一步算法所遵循的共同原則是什么?
高中數(shù)學(xué)優(yōu)秀教案 3
教學(xué)目標(biāo):
1.結(jié)合實(shí)際問題情景,理解分層抽樣的必要性和重要性;
2.學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;
3.并對(duì)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系。
教學(xué)重點(diǎn):
通過實(shí)例理解分層抽樣的方法。
教學(xué)難點(diǎn):
分層抽樣的步驟。
教學(xué)過程:
一、問題情境
1.復(fù)習(xí)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍。
2.實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?
二、學(xué)生活動(dòng)
能否用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?
指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性.
由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,
所以在各年級(jí)抽取的個(gè)體數(shù)依次是xx,xx,xx,即40,32,28。
三、建構(gòu)數(shù)學(xué)
1.分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的'各部分叫“層”。
說明:①分層抽樣時(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;
②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用。
2.三種抽樣方法對(duì)照表:
類別
共同點(diǎn)
各自特點(diǎn)
相互聯(lián)系
適用范圍
簡(jiǎn)單隨機(jī)抽樣
抽樣過程中每個(gè)個(gè)體被抽取的概率是相同的
從總體中逐個(gè)抽取
總體中的個(gè)體數(shù)較少
系統(tǒng)抽樣
將總體均分成幾個(gè)部分,按事先確定的規(guī)則在各部分抽取
在第一部分抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣
總體中的個(gè)體數(shù)較多
分層抽樣
將總體分成幾層,分層進(jìn)行抽取
各層抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)
總體由差異明顯的幾部分組成
3.分層抽樣的步驟:
。1)分層:將總體按某種特征分成若干部分。
。2)確定比例:計(jì)算各層的個(gè)體數(shù)與總體的個(gè)體數(shù)的比。
。3)確定各層應(yīng)抽取的樣本容量。
(4)在每一層進(jìn)行抽樣(各層分別按簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣的方法抽。C合每層抽樣,組成樣本。
四、數(shù)學(xué)運(yùn)用
1.例題。
例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________。
。2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調(diào)2人參加座談;
、谀嘲嗥谥锌荚囉15人在85分以上,40人在60-84分,1人不及格,F(xiàn)欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);
、勰嘲嘣┚蹠(huì),要產(chǎn)生兩名“幸運(yùn)者”。
對(duì)這三件事,合適的抽樣方法為()
A.分層抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣
B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡(jiǎn)單隨機(jī)抽樣
C.分層抽樣,簡(jiǎn)單隨機(jī)抽樣,簡(jiǎn)單隨機(jī)抽樣
D.系統(tǒng)抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣
例2某電視臺(tái)在因特網(wǎng)上就觀眾對(duì)某一節(jié)目的喜愛程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:
很喜愛
喜愛
一般
不喜愛
2435
4567
3926
1072
電視臺(tái)為進(jìn)一步了解觀眾的具體想法和意見,打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)怎樣進(jìn)行抽樣?
解:抽取人數(shù)與總的比是60∶12000=1∶200,
則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,
取近似值得各層人數(shù)分別是12,23,20,5。
然后在各層用簡(jiǎn)單隨機(jī)抽樣方法抽取。
答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人
數(shù)分別為12,23,20,5。
說明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對(duì)于不能取整數(shù)的情況,取其近似值。
。3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名。為了了解教職工對(duì)學(xué)校在校務(wù)公開方面的某意見,擬抽取一個(gè)容量為20的樣本。
分析:(1)總體容量較小,用抽簽法或隨機(jī)數(shù)表法都很方便。
。2)總體容量較大,用抽簽法或隨機(jī)數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣。
。3)由于學(xué)校各類人員對(duì)這一問題的看法可能差異較大,所以應(yīng)采用分層抽樣方法。
五、要點(diǎn)歸納與方法小結(jié)
本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.分層抽樣的概念與特征;
2.三種抽樣方法相互之間的區(qū)別與聯(lián)系。
高中數(shù)學(xué)優(yōu)秀教案 4
一、教學(xué)內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實(shí)踐后的高度抽象,恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡(jiǎn)馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來熟練的解題”。
二、學(xué)生學(xué)習(xí)情況分析
我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。
三、設(shè)計(jì)思想
由于這部分知識(shí)較為抽象,如果離開感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情。在教學(xué)時(shí),借助多媒體動(dòng)畫,引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問題、解決問題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率。
四、教學(xué)目標(biāo)
1、深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。
2、通過對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問題的能力;通過對(duì)問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
五、教學(xué)重點(diǎn)與難點(diǎn):
教學(xué)重點(diǎn)
1、對(duì)圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學(xué)難點(diǎn):
巧用圓錐曲線定義解題
六、教學(xué)過程設(shè)計(jì)
【設(shè)計(jì)思路】
(一)開門見山,提出問題
一上課,我就直截了當(dāng)?shù)亟o出例題1:
(1)已知A(-2,0),B(2,0)動(dòng)點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是()。
(A)橢圓(B)雙曲線(C)線段(D)不存在
(2)已知?jiǎng)狱c(diǎn)M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是()。
(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線
【設(shè)計(jì)意圖】
定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。
為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。
【學(xué)情預(yù)設(shè)】
估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)25
這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過適當(dāng)?shù)淖冃危D(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。
在對(duì)學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是,實(shí)軸長(zhǎng)為,焦距為。以深化對(duì)概念的理解。
(二)理解定義、解決問題
例2:
(1)已知?jiǎng)訄AA過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。
(2)在(1)的'條件下,給定點(diǎn)P(-2,2),求|PA|
【設(shè)計(jì)意圖】
運(yùn)用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學(xué)生們比較容易混淆的一類問題。例2的設(shè)置就是為了方便學(xué)生的辨析。
【學(xué)情預(yù)設(shè)】
根據(jù)以往的經(jīng)驗(yàn),多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準(zhǔn)確寫出點(diǎn)A的軌跡,有了練習(xí)題1的鋪墊,這個(gè)問題對(duì)學(xué)生們來講就顯得頗為簡(jiǎn)單,因此面對(duì)例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對(duì)于例2(2)這樣相對(duì)比較陌生的問題,學(xué)生就無從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。
(三)自主探究、深化認(rèn)識(shí)
如果時(shí)間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗(yàn)的機(jī)會(huì)。
練習(xí):
設(shè)點(diǎn)Q是圓C:(x1)2225|AB|的最小值。3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內(nèi)一點(diǎn),AQ的垂直平分線與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。
引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì)是什么?
【設(shè)計(jì)意圖】練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺(tái),當(dāng)然,如果課堂上時(shí)間允許的話,
可借助“多媒體課件”,引導(dǎo)學(xué)生對(duì)自己的結(jié)論進(jìn)行驗(yàn)證。
【知識(shí)鏈接】
(一)圓錐曲線的定義
1、圓錐曲線的第一定義
2、圓錐曲線的統(tǒng)一定義
(二)圓錐曲線定義的應(yīng)用舉例
1、雙曲線1的兩焦點(diǎn)為F1、F2,P為曲線上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P到右準(zhǔn)線的距離。
2、|PF1||PF2|2P為等軸雙曲線x2y2a2上一點(diǎn),F(xiàn)1、F2為兩焦點(diǎn),O為雙曲線的中心,求的|PO|取值范圍。
3、在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,求拋物線的方程和點(diǎn)A的坐標(biāo)。
4、例題:
(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求|MA|+|MF|的最小值。
(2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的右焦點(diǎn),M在雙曲線右支上移動(dòng),當(dāng)|AM||MF|最小時(shí),求M點(diǎn)的坐標(biāo)。
(3)已知點(diǎn)P(-2,3)及焦點(diǎn)為F的拋物線y,在拋物線上求一點(diǎn)M,使|PM|+|FM|最小。
5、已知A(4,0),B(2,2)是橢圓1內(nèi)的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最小值與最大值。
七、教學(xué)反思
1、本課將借助于,將使全體學(xué)生參與活動(dòng)成為可能,使原來令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢(shì)。
2、利用兩個(gè)例題及其引申,通過一題多變,層層深入的探索,以及對(duì)猜測(cè)結(jié)果的檢測(cè)研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會(huì)一個(gè)問題的求解到掌握一類問題的解決方法,循序漸進(jìn)的讓學(xué)生把握這類問題的解法;將學(xué)生容易混淆的兩類求“最值問題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動(dòng)量并不會(huì)小。
總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個(gè)重要研究課題,而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會(huì),能夠使學(xué)生在學(xué)習(xí)新知識(shí)的同時(shí),激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗(yàn),于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。
高中數(shù)學(xué)優(yōu)秀教案 5
一、預(yù)習(xí)目標(biāo)
預(yù)習(xí)《平面向量應(yīng)用舉例》,體會(huì)向量是一種處理幾何問題、物理問題等的工具,建立實(shí)際問題與向量的聯(lián)系。
二、預(yù)習(xí)內(nèi)容
閱讀課本內(nèi)容,整理例題,結(jié)合向量的運(yùn)算,解決實(shí)際的幾何問題、物理問題。另外,在思考一下幾個(gè)問題:
1、例1如果不用向量的方法,還有其他證明方法嗎?
2、利用向量方法解決平面幾何問題的“三步曲”是什么?
3、例3中,
、艦楹沃禃r(shí)|F1|最小,最小值是多少?
、苵F1|能等于|G|嗎?為什么?
三、提出疑惑
同學(xué)們,通過你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中疑惑點(diǎn)疑惑內(nèi)容。
課內(nèi)探究學(xué)案
一、學(xué)習(xí)內(nèi)容
1、運(yùn)用向量的有關(guān)知識(shí)(向量加減法與向量數(shù)量積的運(yùn)算法則等)解決平面幾何和解析幾何中直線或線段的平行、垂直、相等、夾角和距離等問題。
2、運(yùn)用向量的有關(guān)知識(shí)解決簡(jiǎn)單的物理問題。
二、學(xué)習(xí)過程
探究一:
。1)向量運(yùn)算與幾何中的結(jié)論"若,則,且所在直線平行或重合"相類比,你有什么體會(huì)?
。2)舉出幾個(gè)具有線性運(yùn)算的幾何實(shí)例。
例1、證明:平行四邊形兩條對(duì)角線的平方和等于四條邊的平方和。
已知:平行四邊形ABCD。
求證:
試用幾何方法解決這個(gè)問題,利用向量的方法解決平面幾何問題的“三步曲”?
。1)建立平面幾何與向量的.聯(lián)系,
。2)通過向量運(yùn)算,研究幾何元素之間的關(guān)系,
(3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系。
例2,如圖,平行四邊形ABCD中,點(diǎn)E、F分別是AD、DC邊的中點(diǎn),BE、BF分別與AC交于R、T兩點(diǎn),你能發(fā)現(xiàn)AR、RT、TC之間的關(guān)系嗎?
探究二:兩個(gè)人提一個(gè)旅行包,夾角越大越費(fèi)力。在單杠上做引體向上運(yùn)動(dòng),兩臂夾角越小越省力。這些力的問題是怎么回事?
例3,在日常生活中,你是否有這樣的經(jīng)驗(yàn):兩個(gè)人共提一個(gè)旅行包,夾角越大越費(fèi)力;在單杠上作引體向上運(yùn)動(dòng),兩臂的夾角越小越省力。你能從數(shù)學(xué)的角度解釋這種現(xiàn)象嗎?
請(qǐng)同學(xué)們結(jié)合剛才這個(gè)問題,思考下面的問題:
、艦楹沃禃r(shí)|F1|最小,最小值是多少?
、苵F1|能等于|G|嗎?為什么?
例4如圖,一條河的兩岸平行,河的寬度m,一艘船從A處出發(fā)到河對(duì)岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問行駛航程最短時(shí),所用的時(shí)間是多少(精確到0.1min)?
變式訓(xùn)練:兩個(gè)粒子A、B從同一源發(fā)射出來,在某一時(shí)刻,它們的位移分別為,(1)寫出此時(shí)粒子B相對(duì)粒子A的位移s;(2)計(jì)算s在方向上的投影。
三、反思總結(jié)
結(jié)合圖形特點(diǎn),選定正交基底,用坐標(biāo)表示向量進(jìn)行運(yùn)算解決幾何問題,體現(xiàn)幾何問題。
代數(shù)化的特點(diǎn),數(shù)形結(jié)合的數(shù)學(xué)思想體現(xiàn)的淋漓盡致。向量作為橋梁工具使得運(yùn)算簡(jiǎn)練標(biāo)致,又體現(xiàn)了數(shù)學(xué)的美。有關(guān)長(zhǎng)方形、正方形、直角三角形等平行、垂直等問題常用此法。
本節(jié)主要研究了用向量知識(shí)解決平面幾何問題和物理問題;掌握向量法和坐標(biāo)法,以及用向量解決實(shí)際問題的步驟。
高中數(shù)學(xué)優(yōu)秀教案 6
教學(xué)目的:
掌握?qǐng)A的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題
教學(xué)重點(diǎn):
圓的`標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用
教學(xué)難點(diǎn):
標(biāo)準(zhǔn)方程的靈活運(yùn)用
教學(xué)過程:
一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程
二、掌握知識(shí),鞏固練習(xí)
練習(xí):
1、說出下列圓的方程
⑴圓心(3,—2)半徑為5
、茍A心(0,3)半徑為3
2、指出下列圓的圓心和半徑
、牛▁—2)2+(y+3)2=3
⑵x2+y2=2
、莤2+y2—6x+4y+12=0
3、判斷3x—4y—10=0和x2+y2=4的位置關(guān)系
4、圓心為(1,3),并與3x—4y—7=0相切,求這個(gè)圓的方程
三、引伸提高,講解例題
例1、圓心在y=—2x上,過p(2,—1)且與x—y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)
練習(xí):1、某圓過(—2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(—10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長(zhǎng)度。
例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)
四、小結(jié)練習(xí)P771,2,3,4
五、作業(yè)P811,2,3,4
高中數(shù)學(xué)優(yōu)秀教案 7
一、教學(xué)目標(biāo)
【知識(shí)與技能】
掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。
【過程與方法】
經(jīng)歷三角函數(shù)的單調(diào)性的探索過程,提升邏輯推理能力。
【情感態(tài)度價(jià)值觀】
在猜想計(jì)算的過程中,提高學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)重難點(diǎn)
【教學(xué)重點(diǎn)】
三角函數(shù)的單調(diào)性以及三角函數(shù)值的.取值范圍。
【教學(xué)難點(diǎn)】
探究三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍過程。
三、教學(xué)過程
。ㄒ唬┮胄抡n
提出問題:如何研究三角函數(shù)的單調(diào)性
(四)小結(jié)作業(yè)
提問:今天學(xué)習(xí)了什么?
引導(dǎo)學(xué)生回顧:基本不等式以及推導(dǎo)證明過程。
課后作業(yè):
思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。
高中數(shù)學(xué)優(yōu)秀教案 8
一、教材分析:
集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。
二、目標(biāo)分析:
教學(xué)重點(diǎn)。難點(diǎn)
重點(diǎn):集合的含義與表示方法。
難點(diǎn):表示法的恰當(dāng)選擇。
教學(xué)目標(biāo)
1.知識(shí)與技能
(1)通過實(shí)例,了解集合的含義,體會(huì)元素與集合的屬于關(guān)系;
(2)知道常用數(shù)集及其專用記號(hào);
(3)了解集合中元素的確定性。互異性。無序性;
(4)會(huì)用集合語言表示有關(guān)數(shù)學(xué)對(duì)象;
2.過程與方法
(1)讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過程,感知集合的含義。
(2)讓學(xué)生歸納整理本節(jié)所學(xué)知識(shí)。
3.情感。態(tài)度與價(jià)值觀
使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性。
三、教法分析
1.教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo)。
2.教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué)。
四。過程分析
(一)創(chuàng)設(shè)情景,揭示課題
1.教師首先提出問題:
(1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級(jí)。
(2)問題:像“家庭”、“學(xué)!、“班級(jí)”等,有什么共同特征?
引導(dǎo)學(xué)生互相交流。與此同時(shí),教師對(duì)學(xué)生的活動(dòng)給予評(píng)價(jià)。
2.活動(dòng):
(1)列舉生活中的集合的例子;
(2)分析、概括各實(shí)例的共同特征
由此引出這節(jié)要學(xué)的內(nèi)容。
設(shè)計(jì)意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊
(二)研探新知,建構(gòu)概念
1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個(gè)實(shí)例:
(1)1—20以內(nèi)的所有質(zhì)數(shù);
(2)我國(guó)古代的四大發(fā)明;
(3)所有的安理會(huì)常任理事國(guó);
(4)所有的正方形;
(5)海南省在2004年9月之前建成的所有立交橋;
(6)到一個(gè)角的兩邊距離相等的所有的點(diǎn);
(7)國(guó)興中學(xué)2004年9月入學(xué)的高一學(xué)生的全體。
2.教師組織學(xué)生分組討論:這7個(gè)實(shí)例的共同特征是什么?
3.每個(gè)小組選出——位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個(gè)實(shí)例的'特征,并給出集合的含義。一般地,指定的某些對(duì)象的全體稱為集合(簡(jiǎn)稱為集).集合中的每個(gè)對(duì)象叫作這個(gè)集合的元素。
4.教師指出:集合常用大寫字母A,B,C,D表示,元素常用小寫字母a,b,c,d表示。
設(shè)計(jì)意圖:通過實(shí)例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神
(三)質(zhì)疑答辯,發(fā)展思維
1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點(diǎn)?并注意個(gè)別輔導(dǎo),解答學(xué)生疑難。使學(xué)生明確集合元素的三大特性,即:確定性、互異性和無序性。只要構(gòu)成兩個(gè)集合的元素是一樣的,我們就稱這兩個(gè)集合相等。
2.教師組織引導(dǎo)學(xué)生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數(shù);
(2)我國(guó)的小河流。讓學(xué)生充分發(fā)表自己的建解。
3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由。教師對(duì)學(xué)生的學(xué)習(xí)活動(dòng)給予及時(shí)的評(píng)價(jià)。
4.教師提出問題,讓學(xué)生思考
b是(1)如果用A表示高—(3)班全體學(xué)生組成的集合,用a表示高一(3)班的一位同學(xué),高一(4)班的一位同學(xué),那么a,b與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于。
如果a是集合A的元素,就說a屬于集合A
如果a不是集合A的元素,就說a不屬于集合A
(2)如果用A表示“所有的安理會(huì)常任理事國(guó)”組成的集合,則中國(guó)。日本與集合A的關(guān)系分別是什么?請(qǐng)用數(shù)學(xué)符號(hào)分別表示。
(3)讓學(xué)生完成教材第6頁(yè)練習(xí)第1題。
5.教師引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號(hào)。并讓學(xué)生完成習(xí)題1.1A組第1題。
6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考。討論下列問題:
(1)要表示一個(gè)集合共有幾種方式?
(2)試比較自然語言。列舉法和描述法在表示集合時(shí),各自的特點(diǎn)?適用的對(duì)象是什么?
(3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉ǎ?/p>
使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn)和體會(huì)它們存在的必要性和適用對(duì)象。
設(shè)計(jì)意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn),從而突破難點(diǎn)。
(四)鞏固深化,反饋矯正
教師投影學(xué)習(xí)
(1)用自然語言描述集合{1,3,5,7,9};
(2)用例舉法表示集合A
(3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁(yè)練習(xí)第2題。
設(shè)計(jì)意圖:使學(xué)生及時(shí)鞏固所學(xué)新知,體會(huì)三種表示方式存在的必要性和適用對(duì)象
(五)歸納小結(jié),布置作業(yè)
1.小結(jié):在師生互動(dòng)中,讓學(xué)生了解或體會(huì)下例問題:
本節(jié)課我們學(xué)習(xí)了哪些知識(shí)內(nèi)容?
2.你認(rèn)為學(xué)習(xí)集合有什么意義?
3.選擇集合的表示法時(shí)應(yīng)注意些什么?
設(shè)計(jì)意圖:通過回顧,對(duì)概念的發(fā)生與發(fā)展過程有清晰的認(rèn)識(shí),回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):
1.課后書面作業(yè):第13頁(yè)習(xí)題1.1A組第4題
2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種呢?如何表示?請(qǐng)同學(xué)們通過預(yù)習(xí)教材。
高中數(shù)學(xué)優(yōu)秀教案 9
一、教學(xué)目標(biāo)
1. 知識(shí)與技能:理解并掌握等比數(shù)列的性質(zhì),能夠初步應(yīng)用這些性質(zhì)解決數(shù)學(xué)問題。
2. 過程與方法:通過觀察、類比、猜測(cè)等推理方法,提高學(xué)生分析、綜合、抽象、概括等邏輯思維能力。
3. 情感態(tài)度價(jià)值觀:體會(huì)類比在研究新事物中的作用,了解知識(shí)間存在的共同規(guī)律,激發(fā)學(xué)生對(duì)數(shù)學(xué)的興趣。
二、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):等比數(shù)列的性質(zhì)及其應(yīng)用。
難點(diǎn):等比數(shù)列性質(zhì)的應(yīng)用,特別是復(fù)雜情境下的數(shù)學(xué)建模。
三、教學(xué)過程
1. 導(dǎo)入新課
復(fù)習(xí)等比數(shù)列的定義和通項(xiàng)公式,通過實(shí)例引入等比數(shù)列性質(zhì)的學(xué)習(xí)。
2. 新課講授
性質(zhì)探究:通過小組討論,引導(dǎo)學(xué)生觀察等比數(shù)列的通項(xiàng)公式,類比等差數(shù)列的性質(zhì),猜想并證明等比數(shù)列的性質(zhì)(如等比數(shù)列中任意兩項(xiàng)的比值相等,即公比q)。
例題講解:選取典型例題,講解如何利用等比數(shù)列的性質(zhì)解決問題,強(qiáng)調(diào)解題步驟和思路。
3. 鞏固練習(xí)
設(shè)計(jì)不同難度的練習(xí)題,包括直接應(yīng)用性質(zhì)和需要一定推理的`題目,讓學(xué)生在練習(xí)中鞏固所學(xué)知識(shí)。
4. 總結(jié)提升
引導(dǎo)學(xué)生總結(jié)等比數(shù)列的性質(zhì)及其應(yīng)用,強(qiáng)調(diào)類比思維在數(shù)學(xué)學(xué)習(xí)中的重要性。
布置課外作業(yè),包括基礎(chǔ)題和拓展題,鼓勵(lì)學(xué)生進(jìn)一步探索等比數(shù)列的應(yīng)用。
高中數(shù)學(xué)優(yōu)秀教案 10
一、教學(xué)目標(biāo)
1. 知識(shí)與技能:使學(xué)生正確理解組合的意義,掌握組合數(shù)的計(jì)算公式,能夠解決簡(jiǎn)單的組合問題。
2. 過程與方法:通過問題導(dǎo)向的教學(xué)方法,培養(yǎng)學(xué)生分析問題和解決問題的能力,以及類比的學(xué)習(xí)方法。
3. 情感態(tài)度價(jià)值觀:激發(fā)學(xué)生對(duì)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的邏輯思維能力和創(chuàng)新精神。
二、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):組合的定義、組合數(shù)及組合數(shù)的公式。
難點(diǎn):解組合的應(yīng)用題,特別是需要靈活運(yùn)用組合公式解決實(shí)際問題的情境。
三、教學(xué)過程
1. 導(dǎo)入新課
通過生活中的實(shí)例(如從幾個(gè)不同元素中選取幾個(gè)元素組成一組)引入組合的概念,激發(fā)學(xué)生的學(xué)習(xí)興趣。
2. 新課講授
定義講解:明確組合的定義,即從n個(gè)不同元素中取出m個(gè)元素(m≤n)并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合。
公式推導(dǎo):通過實(shí)例講解組合數(shù)的計(jì)算公式C(n,m)=n!/[m!(n-m)!],并引導(dǎo)學(xué)生理解公式的含義和推導(dǎo)過程。
例題講解:選取典型例題,講解如何利用組合公式解決組合問題,強(qiáng)調(diào)解題步驟和思路。
3. 鞏固練習(xí)
設(shè)計(jì)不同難度的`練習(xí)題,包括直接應(yīng)用組合公式和需要一定推理的題目,讓學(xué)生在練習(xí)中鞏固所學(xué)知識(shí)。
4. 總結(jié)提升
引導(dǎo)學(xué)生總結(jié)組合的概念、組合數(shù)的計(jì)算公式及其應(yīng)用,強(qiáng)調(diào)類比思維在解決組合問題中的重要性。
布置課外作業(yè),包括基礎(chǔ)題和拓展題,鼓勵(lì)學(xué)生進(jìn)一步探索組合的應(yīng)用。
高中數(shù)學(xué)優(yōu)秀教案 11
一、教學(xué)目標(biāo)
1. 知識(shí)與技能:理解并掌握等比數(shù)列的性質(zhì),并能夠初步應(yīng)用這些性質(zhì)解決相關(guān)問題。
2. 過程與方法:通過觀察、類比、猜測(cè)等推理方法,提高學(xué)生分析、綜合、抽象、概括等邏輯思維能力。
3. 情感態(tài)度價(jià)值觀:體會(huì)類比在研究新事物中的作用,了解知識(shí)間存在的共同規(guī)律,培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的興趣和熱愛。
二、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):等比數(shù)列的性質(zhì)及其應(yīng)用。
難點(diǎn):等比數(shù)列性質(zhì)的應(yīng)用,特別是解決復(fù)雜問題時(shí)如何靈活運(yùn)用這些性質(zhì)。
三、教學(xué)過程
1. 復(fù)習(xí)引入
回顧等差數(shù)列的.定義、通項(xiàng)公式及性質(zhì)。
引導(dǎo)學(xué)生對(duì)比等差數(shù)列,思考等比數(shù)列的定義及可能具有的性質(zhì)。
2. 新課講授
定義講解:明確等比數(shù)列的定義,即一個(gè)數(shù)列,若從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)之比都是同一個(gè)非零常數(shù),則這個(gè)數(shù)列是等比數(shù)列。
性質(zhì)推導(dǎo):通過類比等差數(shù)列的性質(zhì),引導(dǎo)學(xué)生猜想并推導(dǎo)等比數(shù)列的性質(zhì)。例如,等比數(shù)列中任意兩項(xiàng)的比值相等,通項(xiàng)公式為$a_n = a_1 \times q^{(n-1)}$等。
例題講解:通過具體例題,展示如何應(yīng)用等比數(shù)列的性質(zhì)解決問題。
3. 探究活動(dòng)
小組研討:分組讓學(xué)生根據(jù)導(dǎo)學(xué)稿內(nèi)容研討等比數(shù)列的性質(zhì),并派代表講解練習(xí)。
性質(zhì)證明:選取幾個(gè)重要的性質(zhì)進(jìn)行證明,如等比數(shù)列中項(xiàng)的性質(zhì)、求和公式等。
4. 鞏固練習(xí)
設(shè)計(jì)一系列練習(xí)題,包括基礎(chǔ)題和綜合題,讓學(xué)生鞏固所學(xué)知識(shí)。
5. 小結(jié)與作業(yè)
總結(jié)本節(jié)課的重點(diǎn)內(nèi)容,強(qiáng)調(diào)等比數(shù)列的性質(zhì)及應(yīng)用。
布置課后作業(yè),包括課本習(xí)題和思考題,以進(jìn)一步鞏固和拓展學(xué)生的知識(shí)。
高中數(shù)學(xué)優(yōu)秀教案 12
一、教學(xué)目標(biāo)
1. 知識(shí)與技能:使學(xué)生正確理解組合的意義,掌握組合數(shù)的計(jì)算公式,并學(xué)會(huì)應(yīng)用組合知識(shí)解決實(shí)際問題。
2. 過程與方法:通過提出問題、創(chuàng)設(shè)情境、歸納概括等教學(xué)方法,培養(yǎng)學(xué)生分析問題、解決問題的能力。
3. 情感態(tài)度價(jià)值觀:激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和探索精神。
二、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):組合的定義、組合數(shù)及組合數(shù)的公式。
難點(diǎn):解組合的應(yīng)用題,特別是如何將實(shí)際問題抽象為組合問題并求解。
三、教學(xué)過程
1. 導(dǎo)入新課
提出問題:如“一條鐵路線上有6個(gè)火車站,需準(zhǔn)備多少種不同的普通客車票?有多少種不同票價(jià)的`普通客車票?”引導(dǎo)學(xué)生思考并區(qū)分排列與組合問題。
2. 新課講授
定義講解:明確組合的定義,即從n個(gè)不同元素中取出m個(gè)元素并成一組(m≤n),叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合。
公式推導(dǎo):通過分步計(jì)數(shù)原理推導(dǎo)出組合數(shù)的計(jì)算公式$C_n^m = \frac{n!}{m!(n-m)!}$。
例題講解:通過具體例題展示如何應(yīng)用組合數(shù)的計(jì)算公式解決問題。
3. 歸納概括
總結(jié)組合的定義、性質(zhì)及計(jì)算公式,強(qiáng)調(diào)組合與排列的區(qū)別。
4. 鞏固練習(xí)
設(shè)計(jì)一系列練習(xí)題,包括基礎(chǔ)題和綜合題,讓學(xué)生鞏固所學(xué)知識(shí)并學(xué)會(huì)應(yīng)用。
5. 小結(jié)與作業(yè)
總結(jié)本節(jié)課的重點(diǎn)內(nèi)容,強(qiáng)調(diào)組合的意義及應(yīng)用。
布置課后作業(yè),包括課本習(xí)題和思考題,以進(jìn)一步鞏固和拓展學(xué)生的知識(shí)。
高中數(shù)學(xué)優(yōu)秀教案 13
一、教學(xué)內(nèi)容分析
圓錐曲線的定義揭示了其本質(zhì)特征,是經(jīng)過無數(shù)次實(shí)踐的高度抽象。恰當(dāng)運(yùn)用定義解題,往往能夠化繁為簡(jiǎn)。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及其標(biāo)準(zhǔn)方程和幾何性質(zhì)之后,有必要再次強(qiáng)調(diào)定義的重要性,學(xué)會(huì)靈活運(yùn)用圓錐曲線的定義來高效解題。
二、學(xué)生學(xué)習(xí)情況分析
我所教班級(jí)的學(xué)生積極參與課堂教學(xué)活動(dòng),思維活躍,但計(jì)算能力較弱,邏輯推理能力欠缺,運(yùn)用數(shù)學(xué)語言表達(dá)的能力也有待提高。
三、設(shè)計(jì)思想
由于這部分知識(shí)較為抽象,若缺乏感性認(rèn)識(shí),容易讓學(xué)生陷入困境,降低其學(xué)習(xí)熱情。在教學(xué)過程中,可利用多媒體動(dòng)畫,引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問題并解決問題,積極參與到教學(xué)活動(dòng)中,在輕松愉快的氛圍中發(fā)現(xiàn)和掌握新知識(shí),從而提高教學(xué)效率。
四、教學(xué)目標(biāo)
1.深刻理解并熟練掌握?qǐng)A錐曲線的定義,能夠靈活運(yùn)用定義解決實(shí)際問題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念及其求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。
2.通過練習(xí)加強(qiáng)對(duì)圓錐曲線定義的理解,提升分析和解決問題的能力;通過不斷引申問題,巧妙設(shè)問,引導(dǎo)學(xué)生掌握解題的一般方法。
3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.
五、教學(xué)重點(diǎn)與難點(diǎn):
教學(xué)重點(diǎn)
1.對(duì)圓錐曲線定義的理解
2.利用圓錐曲線的定義求“最值”
3.“定義法”求軌跡方程
教學(xué)難點(diǎn):
巧用圓錐曲線定義解題
六、教學(xué)過程設(shè)計(jì)
【設(shè)計(jì)思路】
(一)開門見山,提出問題
一上課,我就直截了當(dāng)?shù)亟o出——
例題1:(1)已知A(-2,0),B(2,0)動(dòng)點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是( )。
(A)橢圓(B)雙曲線(C)線段(D)不存在
(2)已知?jiǎng)狱c(diǎn)M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是( )。
(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線
【設(shè)計(jì)意圖】
定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必要條件。經(jīng)過一段時(shí)間的學(xué)習(xí)后,學(xué)生們對(duì)圓錐曲線的定義已有一定的了解,但他們是否真正掌握了這些概念的本質(zhì),是我這堂課首先要解決的問題。
為了加深學(xué)生對(duì)圓錐曲線定義的理解,我圍繞圓錐曲線定義的應(yīng)用,精心準(zhǔn)備了兩道練習(xí)題。
【學(xué)情預(yù)設(shè)】
估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)2
5這樣,很快就能得出正確結(jié)果。如若不然,我將引導(dǎo)他們從等式兩端的式子|3x-4y|/5入手,考慮通過適當(dāng)?shù)淖冃,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。
在對(duì)學(xué)生們的解答進(jìn)行評(píng)判后,我將把問題延伸至:該雙曲線的中心坐標(biāo)是,實(shí)軸長(zhǎng)度為,焦距為。以此來加深對(duì)概念的理解。
(二)理解定義、解決問題
例2 (1)已知?jiǎng)訄AA過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點(diǎn)P(-2,2),求|PA|
【設(shè)計(jì)意圖】
在解析幾何問題中,利用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,將其轉(zhuǎn)化為幾何中求最大值或最小值的問題,是一種常見的題型,同時(shí)也是學(xué)生容易混淆的一類問題。例2的設(shè)計(jì)正是為了幫助學(xué)生更好地進(jìn)行辨析。
【學(xué)情預(yù)設(shè)】
根據(jù)以往的經(jīng)驗(yàn),大部分學(xué)生看上去都能順利解答此題,但真正能夠完整解答的可能并不多。實(shí)際上,解決此題的關(guān)鍵在于能夠準(zhǔn)確寫出點(diǎn)A的軌跡。有了練習(xí)題1的基礎(chǔ),這個(gè)問題對(duì)學(xué)生來說就變得較為簡(jiǎn)單,因此面對(duì)例2(1),大多數(shù)學(xué)生應(yīng)該能夠準(zhǔn)確作答。但對(duì)于例2(2)這種相對(duì)陌生的問題,學(xué)生往往無從下手。我建議學(xué)生將3/5與離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解題的突破口。
(三)自主探究、深化認(rèn)識(shí)
如果時(shí)間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗(yàn)的機(jī)會(huì)。
練習(xí):設(shè)點(diǎn)Q是圓C:(x1)2225|AB|的最小值。 3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內(nèi)一點(diǎn),AQ的垂直平分線與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。
引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì)是什么?
【設(shè)計(jì)意圖】練習(xí)題的目的是為學(xué)生在課外自主探究學(xué)習(xí)搭建平臺(tái),當(dāng)然,若課堂上有足夠時(shí)間的話,可借助“多媒體課件”,引導(dǎo)學(xué)生對(duì)自己的結(jié)論進(jìn)行驗(yàn)證。
【知識(shí)鏈接】
(一)圓錐曲線的定義
1.圓錐曲線的第一定義
2.圓錐曲線的統(tǒng)一定義
(二)圓錐曲線定義的應(yīng)用舉例
1.雙曲線1的兩焦點(diǎn)為F1、F2,P為曲線上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P到右準(zhǔn)線的距離。
2.|PF1||PF2|2.P為等軸雙曲線x2y2a2上一點(diǎn),F(xiàn)1、F2為兩焦點(diǎn),O為雙曲線的中心,求的|PO|取值范圍。
3.在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,求拋物線的方程和點(diǎn)A的坐標(biāo)。
4.(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求|MA|+|MF|的最小值。
(2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的右焦點(diǎn),M在雙曲線右支上移動(dòng),當(dāng)|AM||MF|最小時(shí),求M點(diǎn)的'坐標(biāo)。
(3)已知點(diǎn)P(-2,3)及焦點(diǎn)為F的拋物線y,在拋物線上求一點(diǎn)M,使|PM|+|FM|最小。
5.已知A(4,0),B(2,2)是橢圓1內(nèi)的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最小值與最大值。
七、教學(xué)反思
1.本課將借助于,將使全體學(xué)生參與活動(dòng)成為可能,使原來令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢(shì)。
2.通過兩個(gè)例題及其延伸,采用一題多變的方式,逐步深入地探究,并對(duì)猜測(cè)結(jié)果進(jìn)行驗(yàn)證和研究,旨在培養(yǎng)學(xué)生的思維能力,使他們從掌握單個(gè)問題的求解方法過渡到理解一類問題的解決策略。通過逐步引導(dǎo),幫助學(xué)生掌握這類問題的解法;同時(shí),將學(xué)生容易混淆的兩種“最值問題”整合到一道題目中,便于學(xué)生進(jìn)行對(duì)比和分析。盡管從表面上看,這堂課的教學(xué)容量并不大,但實(shí)際上,學(xué)生的思維活動(dòng)量將會(huì)很大。
總之,如何更準(zhǔn)確地選擇符合學(xué)生實(shí)際情況并滿足教學(xué)目標(biāo)的例題與練習(xí),以及靈活掌握課堂教學(xué)節(jié)奏,依然是我未來工作中需要深入研究的重要課題。而要真正實(shí)施素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),自己首先必須轉(zhuǎn)變觀念——在教學(xué)中適度運(yùn)用多媒體技術(shù),為學(xué)生提供參與教學(xué)實(shí)踐的機(jī)會(huì),使他們?cè)趯W(xué)習(xí)新知識(shí)的同時(shí),激發(fā)求知欲望,在尋找解決問題方法的過程中獲得自信和成功的體驗(yàn),從而在不知不覺中提升思維品質(zhì),提高數(shù)學(xué)思維能力。
高中數(shù)學(xué)優(yōu)秀教案 14
一、教材分析
本小節(jié)選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-數(shù)學(xué)必修(一)》(人教版)第二章基本初等函數(shù)(1)2.2.2對(duì)數(shù)函數(shù)及其性質(zhì)(第一課時(shí)),主要內(nèi)容是學(xué)習(xí)對(duì)數(shù)函數(shù)的定義、圖象、性質(zhì)及初步應(yīng)用。對(duì)數(shù)函數(shù)是繼指數(shù)函數(shù)之后的又一個(gè)重要初等函數(shù),無論從知識(shí)或思想方法的角度對(duì)數(shù)函數(shù)與指數(shù)函數(shù)都有許多類似之處。與指數(shù)函數(shù)相比,對(duì)數(shù)函數(shù)所涉及的知識(shí)更豐富、方法更靈活,能力要求也更高。學(xué)習(xí)對(duì)數(shù)函數(shù)是對(duì)指數(shù)函數(shù)知識(shí)和方法的鞏固、深化和提高,也為解決函數(shù)綜合問題及其在實(shí)際上的應(yīng)用奠定良好的基礎(chǔ)。雖然這個(gè)內(nèi)容十分熟悉,但新教材做了一定的改動(dòng),如何設(shè)計(jì)能夠符合新課標(biāo)理念,是人們十分關(guān)注的,正因如此,本人選擇這課題立求某些方面有所突破。
二、學(xué)生學(xué)習(xí)情況分析
剛從初中升入高一的學(xué)生,仍保留著初中生許多學(xué)習(xí)特點(diǎn),能力發(fā)展正處于形象思維向抽象思維轉(zhuǎn)折階段,但更注重形象思維。由于函數(shù)概念十分抽象,又以對(duì)數(shù)運(yùn)算為基礎(chǔ),同時(shí),初中函數(shù)教學(xué)要求降低,初中生運(yùn)算能力有所下降,這雙重問題增加了對(duì)數(shù)函數(shù)教學(xué)的難度。教師必須認(rèn)識(shí)到這一點(diǎn),教學(xué)中要控制要求的拔高,關(guān)注學(xué)習(xí)過程。
三、設(shè)計(jì)理念
本節(jié)課以建構(gòu)主義基本理論為指導(dǎo),以新課標(biāo)基本理念為依據(jù)進(jìn)行設(shè)計(jì)的,針對(duì)學(xué)生的學(xué)習(xí)背景,對(duì)數(shù)函數(shù)的教學(xué)首先要挖掘其知識(shí)背景貼近學(xué)生實(shí)際,其次,激發(fā)學(xué)生的學(xué)習(xí)熱情,把學(xué)習(xí)的主動(dòng)權(quán)交給學(xué)生,為他們提供自主探究、合作交流的機(jī)會(huì),確實(shí)改變學(xué)生的學(xué)習(xí)方式。
四、教學(xué)目標(biāo)
1.通過具體實(shí)例,直觀了解對(duì)數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對(duì)數(shù)函數(shù)的'概念,體會(huì)對(duì)數(shù)函數(shù)是一類重要的函數(shù)模型;
2.能借助計(jì)算器或計(jì)算機(jī)畫出具體對(duì)數(shù)函數(shù)的圖象,探索并了解對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn);
3.通過比較、對(duì)照的方法,引導(dǎo)學(xué)生結(jié)合圖象類比指數(shù)函數(shù),探索研究對(duì)數(shù)函數(shù)的性質(zhì),培養(yǎng)學(xué)生運(yùn)用函數(shù)的觀點(diǎn)解決實(shí)際問題。
五、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn)是掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì),難點(diǎn)是底數(shù)對(duì)對(duì)數(shù)函數(shù)值變化的影響.
六、教學(xué)過程設(shè)計(jì)
教學(xué)流程:背景材料→引出課題→函數(shù)圖象→函數(shù)性質(zhì)→問題解決→歸納小結(jié)
(一)熟悉背景、引入課題
1.讓學(xué)生看材料:
材料1(幻燈):馬王堆女尸千年不腐之謎:一九七二年,馬王堆考古發(fā)現(xiàn)震驚世界,專家發(fā)掘西漢辛追遺尸時(shí),形體完整,全身潤(rùn)澤,皮膚仍有彈性,關(guān)節(jié)還可以活動(dòng),骨質(zhì)比現(xiàn)在六十歲的正常人還好,是世界上發(fā)現(xiàn)的首例歷史悠久的濕尸。大家知道,世界發(fā)現(xiàn)的不腐之尸都是在干燥的環(huán)境風(fēng)干而成,譬如沙漠環(huán)境,這類干尸雖然肌膚未腐,是因?yàn)楦稍锊焕?xì)菌繁殖,但關(guān)節(jié)和一般人死后一樣,是僵硬的,而馬王堆辛追夫人卻是在濕潤(rùn)的環(huán)境中保存二千多年,而且關(guān)節(jié)可以活動(dòng)。人們最關(guān)注有兩個(gè)問題,第一:怎么鑒定尸體的年份?第二:是什么環(huán)境使尸體未腐?其中第一個(gè)問題與數(shù)學(xué)有關(guān)。
圖4—1 (如圖4—1在長(zhǎng)沙馬王堆“沉睡”近2200年的古長(zhǎng)沙國(guó)丞相夫人辛追,日前奇跡般地“復(fù)活”了)那么,考古學(xué)家是怎么計(jì)算出古長(zhǎng)沙國(guó)丞相夫人辛追“沉睡”近2200年?上面已經(jīng)知道考古學(xué)家是通過提取尸體的殘留物碳14的殘留量p,利用t?logp 57302估算尸體出土的年代,不難發(fā)現(xiàn):對(duì)每一個(gè)碳14的含量的取值,通過這個(gè)對(duì)應(yīng)關(guān)系,生物死亡年數(shù)t都有唯一的值與之對(duì)應(yīng),從而t是p的函數(shù);
如圖4—2材料2(幻燈):某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè)??,如果要求這種細(xì)胞經(jīng)過多少次分裂,大約可以得到細(xì)胞1萬個(gè),10萬個(gè)??,不難發(fā)現(xiàn):分裂次數(shù)y就是要得到的細(xì)胞個(gè)數(shù)x的函數(shù),即y?log2x;
圖4—2 1.引導(dǎo)學(xué)生觀察這些函數(shù)的特征:含有對(duì)數(shù)符號(hào),底數(shù)是常數(shù),真數(shù)是變量,從而得出對(duì)數(shù)函數(shù)的定義:函數(shù)y?logax(a?0,且a?1)叫做對(duì)數(shù)函數(shù),其中x是自變量,函數(shù)的定義域是(0,+∞).
1對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別.如:注意:○ x2對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制:(a?0,都不是對(duì)數(shù)函數(shù).○5y?2log2x,y?log5且a?1).
3.根據(jù)對(duì)數(shù)函數(shù)定義填空;
例1 (1)函數(shù)y=logax的定義域是___________ (其中a>0,a≠1) (2)函數(shù)y=loga(4-x)的定義域是___________ (其中a>0,a≠1)說明:本例主要考察對(duì)數(shù)函數(shù)定義中底數(shù)和定義域的限制,加深對(duì)概念的理
解,所以把教材中的解答題改為填空題,節(jié)省時(shí)間,點(diǎn)到為止,以避免挖深、拓展、引入復(fù)合函數(shù)的概念。
[設(shè)計(jì)意圖:新課標(biāo)強(qiáng)調(diào)“考慮到多數(shù)高中生的認(rèn)知特點(diǎn),為了有助于他們對(duì)函數(shù)概念本質(zhì)的理解,不妨從學(xué)生自己的生活經(jīng)歷和實(shí)際問題入手”。因此,新課引入不是按舊教材從反函數(shù)出發(fā),而是選擇從兩個(gè)材料引出對(duì)數(shù)函數(shù)的概念,讓學(xué)生熟悉它的知識(shí)背景,初步感受對(duì)數(shù)函數(shù)是刻畫現(xiàn)實(shí)世界的又一重要數(shù)學(xué)模型。這樣處理,對(duì)數(shù)函數(shù)顯得不抽象,學(xué)生容易接受,降低了新課教學(xué)的起點(diǎn)] 2
(二)嘗試畫圖、形成感知1.確定探究問題
教師:當(dāng)我們知道對(duì)數(shù)函數(shù)的定義之后,緊接著需要探討什么問題?學(xué)生1:對(duì)數(shù)函數(shù)的圖象和性質(zhì)
教師:你能類比前面研究指數(shù)函數(shù)的思路,提出研究對(duì)數(shù)函數(shù)圖象和性質(zhì)的方
法嗎?
學(xué)生2:先畫圖象,再根據(jù)圖象得出性質(zhì)
教師:畫對(duì)數(shù)函數(shù)的圖象是否象指數(shù)函數(shù)那樣也需要分類?學(xué)生3:按a?1和0?a?1分類討論
教師:觀察圖象主要看哪幾個(gè)特征?
學(xué)生4:從圖象的形狀、位置、升降、定點(diǎn)等角度去識(shí)圖
教師:在明確了探究方向后,下面,按以下步驟共同探究對(duì)數(shù)函數(shù)的圖象:步驟一:(1)用描點(diǎn)法在同一坐標(biāo)系中畫出下列對(duì)數(shù)函數(shù)的圖象y?log2xy?log1x 2 (2)用描點(diǎn)法在同一坐標(biāo)系中畫出下列對(duì)數(shù)函數(shù)的圖象y?log3xy?log1x 3步驟二:觀察對(duì)數(shù)函數(shù)y?log2x、y?log3x與y?log1x、y?log1x的圖象特23征,看看它們有那些異同點(diǎn)。
步驟三:利用計(jì)算器或計(jì)算機(jī),選取底數(shù)a(a?0,且a?1)的若干個(gè)不同的值,
在同一平面直角坐標(biāo)系中作出相應(yīng)對(duì)數(shù)函數(shù)的圖象。觀察圖象,它們有哪些共同特征?
步驟四:規(guī)納出能體現(xiàn)對(duì)數(shù)函數(shù)的代表性圖象
步驟五:作指數(shù)函數(shù)與對(duì)數(shù)函數(shù)圖象的比較2.學(xué)生探究成果
(1)如圖4—3、4—4較為熟練地用描點(diǎn)法畫出下列對(duì)數(shù)函數(shù)y?log2x、 y?log1x、 y?log3x、y?log1x的圖象23圖4—3圖4—4 (2)如圖4—5學(xué)生選取底數(shù)a=1/4、1/5、1/6、1/10、4、5、6、10,并推薦幾位代表上臺(tái)演示‘幾何畫板’,得到相應(yīng)對(duì)數(shù)函數(shù)的圖象。由于學(xué)生自己動(dòng)手,加上‘幾何畫板’的強(qiáng)大作圖功能,學(xué)生非常清楚地看到了底數(shù)a是如何影響函數(shù)y?logax(a?0,且a?1)圖象的變化。
圖4—5 (3)有了這種畫圖感知的過程以及學(xué)習(xí)指數(shù)函數(shù)的經(jīng)驗(yàn),學(xué)生很明確y = loga x (a>1)、y = loga x (0(中部)
高中數(shù)學(xué)優(yōu)秀教案 15
一、教學(xué)內(nèi)容分析:
本節(jié)教材選自人教A版數(shù)學(xué)必修②第二章第一節(jié),本節(jié)內(nèi)容在立體幾何學(xué)習(xí)中起著承上啟下的關(guān)鍵作用,具有重要的意義和地位。本節(jié)課以學(xué)生之前學(xué)習(xí)的空間點(diǎn)、線、面的位置關(guān)系為基礎(chǔ),結(jié)合具體的實(shí)物模型,通過直觀感知和操作確認(rèn)(即合情推理,不需證明),總結(jié)出直線與平面平行的判定定理。本節(jié)課的學(xué)習(xí)對(duì)于培養(yǎng)學(xué)生的空間感和邏輯推理能力至關(guān)重要,尤其是對(duì)后續(xù)線線平行、面面平行的判定學(xué)習(xí)有著重要的促進(jìn)作用。
二、學(xué)生學(xué)習(xí)情況分析:
任教的學(xué)生在年段屬于中上水平,他們對(duì)學(xué)習(xí)有較高的興趣,但在語言表達(dá)和空間感、空間想象力方面較為薄弱,因此在學(xué)習(xí)過程中存在一定困難。
三、設(shè)計(jì)思想
本節(jié)課的設(shè)計(jì)遵循從具體到抽象的原則,適當(dāng)運(yùn)用多媒體輔助教學(xué)手段,借助實(shí)物模型,通過直觀感知,操作確認(rèn),合情推理,歸納出直線與平面平行的判定定理,將合情推理與演繹推理有機(jī)結(jié)合,讓學(xué)生在觀察分析、自主探索、合作交流的過程中,揭示直線與平面平行的判定、理解數(shù)學(xué)的概念,領(lǐng)會(huì)數(shù)學(xué)的思想方法,養(yǎng)成積極主動(dòng)、勇于探索、自主學(xué)習(xí)的學(xué)習(xí)方式,發(fā)展學(xué)生的空間觀念和空間想象力,提高學(xué)生的數(shù)學(xué)邏輯思維能力。
四、教學(xué)目標(biāo)
通過直觀感知——觀察——操作確認(rèn)的認(rèn)識(shí)方法理解并掌握直線與平面平行的判定定理,掌握直線與平面平行的畫法并能準(zhǔn)確使用數(shù)學(xué)符號(hào)語言、文字語言表述判定定理。培養(yǎng)學(xué)生觀察、探究、發(fā)現(xiàn)的能力和空間想象能力、邏輯思維能力。讓學(xué)生在觀察、探究、發(fā)現(xiàn)中學(xué)習(xí),在自主合作、交流中學(xué)習(xí),體驗(yàn)學(xué)習(xí)的樂趣,增強(qiáng)自信心,樹立積極的學(xué)習(xí)態(tài)度,提高學(xué)習(xí)的自我效能感。
五、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn)是判定定理的引入與理解,難點(diǎn)是判定定理的應(yīng)用及立幾空間感、空間觀念的形成與邏輯思維能力的培養(yǎng)。
六、教學(xué)過程設(shè)計(jì)
。ㄒ唬┲R(shí)準(zhǔn)備、新課引入
提問1:根據(jù)公共點(diǎn)的情況,空間中直線a和平面β有哪幾種位置關(guān)系?并完成下表:(多媒體幻燈片演示)a與β?
提問2:根據(jù)直線與平面平行的定義(即兩者無公共點(diǎn))來判斷直線與平面平行,你認(rèn)為是否便捷?請(qǐng)分享你的觀點(diǎn),并探討是否存在其他判定方法。
[設(shè)計(jì)意圖:通過提問,學(xué)生復(fù)習(xí)并歸納空間直線與平面位置關(guān)系引入本節(jié)課題,并為探尋直線與平面平行判定定理作好準(zhǔn)備。]
。ǘ┡卸ǘɡ淼奶角筮^程
1、直觀感知
提問:根據(jù)同學(xué)們?nèi)粘I畹挠^察,你們能感知到并舉出直線與平面平行的具體事例嗎?
生1:例舉日光燈與天花板,樹立的電線桿與墻面。
生2:門轉(zhuǎn)動(dòng)至任何離開門框的位置時(shí),門的邊緣線始終與門框所在的平面保持平行(由學(xué)生在教室門前進(jìn)行演示),隨后教師使用多媒體動(dòng)畫進(jìn)行展示。
[學(xué)情預(yù)設(shè):此處的預(yù)設(shè)與生成應(yīng)當(dāng)是很自然的,但老師要預(yù)見到可能出現(xiàn)的情況如電線桿與墻面可能共面的情形及門要離開門框的位置等情形。]
2、動(dòng)手實(shí)踐
教師取出預(yù)先準(zhǔn)備好的直角梯形泡沫板進(jìn)行演示:當(dāng)把互相平行的一邊放在講臺(tái)桌面上并轉(zhuǎn)動(dòng)時(shí),觀察另一邊與桌面的位置給人一種平行的感覺。而當(dāng)把直角腰放在桌面上并轉(zhuǎn)動(dòng)時(shí),觀察另一邊與桌面給人的印象就不平行了。另外,老師直立在講臺(tái)上,大家會(huì)感覺到老師(視為線)與四周墻面是平行的。如果老師向前或向后傾斜,則感覺老師(視為線)與左右墻面平行;如果老師向左或向右傾斜,則感覺老師(視為線)與前后墻面平行。(老師也可以用事先準(zhǔn)備的木條放在講臺(tái)桌上進(jìn)行上述情況的演示)。
[設(shè)計(jì)意圖:設(shè)置這樣的動(dòng)手實(shí)踐情境,旨在讓學(xué)生更清晰地理解線面平行的關(guān)鍵要素,使學(xué)生在情境中學(xué)習(xí),在情理中思考,在內(nèi)心中感悟,學(xué)會(huì)身邊實(shí)際應(yīng)用的數(shù)學(xué)知識(shí),從而領(lǐng)悟空間觀念和空間圖形性質(zhì)。
3、探究思考
(1)上述演示的直線與平面位置關(guān)系之所以有所不同,關(guān)鍵在于幾個(gè)要素的作用:①平面外的一條直線②我們將直線與平面相交或平行的位置關(guān)系統(tǒng)稱為直線在平面外,用符號(hào)表示為平面內(nèi)一條直線③這兩條直線平行。
。2)如果平面外的直線a與平面??jī)?nèi)的一條直線b平行,那么直線a與平面?平行嗎?
4、歸納確認(rèn):(多媒體幻燈片演示)
平面外的一條直線若與平面內(nèi)的某一直線平行,則該直線與這個(gè)平面平行。
簡(jiǎn)單概括:(內(nèi)外)線線平行?線面平行a符號(hào)表示:ba||? a||b??
溫馨提示:
作用:判定或證明線面平行。
關(guān)鍵:在平面內(nèi)找(或作)出一條直線與面外的直線平行。
思想:空間問題轉(zhuǎn)化為平面問題
(三)定理運(yùn)用,問題探究(多媒體幻燈片演示)
1、想一想:
(1)判斷下列命題的真假?說明理由:
、偃绻粭l直線不在平面內(nèi),則這條直線就與平面平行()
、谶^直線外一點(diǎn)可以作無數(shù)個(gè)平面與這條直線平行( )
、垡恢本上有二個(gè)點(diǎn)到平面的距離相等,則這條直線與平面平行( )
。2)若直線a與平面β內(nèi)無數(shù)條直線平行,則a與β的位置關(guān)系是( )。a、a∥β b、a?β c、a∥β或a?β d、a?β [學(xué)情預(yù)設(shè):設(shè)計(jì)這組問題目的是強(qiáng)調(diào)定理中三個(gè)條件的重要性,同時(shí)預(yù)設(shè)(1)中的③學(xué)生可能認(rèn)為正確,這樣就無法達(dá)到老師的預(yù)設(shè)與生成的目的,這時(shí)教師要引導(dǎo)學(xué)生思考,讓學(xué)生想象的空間更廣闊些。此外教師可用預(yù)先準(zhǔn)備好的羊毛針與泡沫板進(jìn)行演示,讓羊毛針穿過泡沫板以舉不平行的反例,如果有的學(xué)生空間想象力強(qiáng),能按老師的要求生成正確的結(jié)果則就由個(gè)別學(xué)生進(jìn)行演示。]
2、作一作:
設(shè)a、若b為兩異面直線,則在直線a和b之外有一點(diǎn)p,是否存在一個(gè)與a、b均平行的'平面?若存在,請(qǐng)描繪該平面;若不存在,請(qǐng)解釋原因。
先由學(xué)生討論交流,教師提問,然后教師總結(jié),并用準(zhǔn)備好的羊毛針、鐵線、泡沫板等演示平面的形成過程,最后借多媒體展示作圖的動(dòng)畫過程。
[設(shè)計(jì)意圖:這是一道動(dòng)手操作的題目,旨在不僅深化對(duì)定理的理解,更側(cè)重于培養(yǎng)學(xué)生的空間感和思維的嚴(yán)密性。
3、證一證:
例1(見課本60頁(yè)例1):已知空間四邊形abcd中,e、f分別是ab、ad的中點(diǎn),求證:ef ||平面bcd。
變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點(diǎn),連結(jié)ef、fg、gh、he、ac、bd請(qǐng)分別找出圖中滿足線面平行位置關(guān)系的所有情況。(共6組線面平行)變式二:在變式一的圖中如作pq?ef,使p點(diǎn)在線段ae上、q點(diǎn)在線段fc上,連結(jié)ph、qg,并繼續(xù)探究圖中所具有的線面平行位置關(guān)系?(在變式一的基礎(chǔ)上增加了4組線面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說明理由。
[設(shè)計(jì)意圖:例2:如圖,在正方體ABCD-A1B1C1D1中,E、F分別是棱BC與C1D1的中點(diǎn),求證:EF∥平面BDD1B1。分析:根據(jù)判定定理,需在平面上找到一條與EF平行的直線。
面bdd1b1內(nèi)找(作)一條線與ef平行,聯(lián)想到中點(diǎn)問題找中點(diǎn)解決的方法,可以取bd或b1d1中點(diǎn)而證之。
思路一:取bd中點(diǎn)g連d1g、eg,可證d1gef為平行四邊形。
思路二:取d1b1中點(diǎn)h連hb、hf,可證hfeb為平行四邊形。
[知識(shí)鏈接:根據(jù)空間問題平面化的思想,因此把找空間平行直線問題轉(zhuǎn)化為找平行四邊形或三角形中位線問題,這樣就自然想到了找中點(diǎn)。平行問題找中點(diǎn)解決是個(gè)好途徑好方法。這種思想方法是解決立幾論證平行問題,培養(yǎng)邏輯思維能力的重要思想方法]
4、練一練:
練習(xí)1:見課本6頁(yè)練習(xí)1、2
練習(xí)2:將兩個(gè)全等的正方形abcd和abef拼在一起,設(shè)m、n分別為ac、bf中點(diǎn),求證:mn ||平面bce。
變式:若將練習(xí)2中m、n改為ac、bf分點(diǎn)且am = fn,試問結(jié)論仍成立嗎?試證之。
[設(shè)計(jì)意圖:設(shè)計(jì)這組練習(xí),目的是為了鞏固與深化定理的運(yùn)用,特別是通過練習(xí)2及其變式的訓(xùn)練,讓學(xué)生能在復(fù)雜的圖形中去識(shí)圖,去尋找分析問題、解決問題的途徑與方法,以達(dá)到逐步培養(yǎng)空間感與邏輯思維能力。]
。ㄋ模┛偨Y(jié)
先由學(xué)生口頭總結(jié),然后教師歸納總結(jié)(由多媒體幻燈片展示):
1、平面外的一條直線若與平面內(nèi)的一條直線平行,則該直線與這個(gè)平面平行。
2、定理的符號(hào)表示:ba||? a||b??簡(jiǎn)述:(內(nèi)外)線線平行則線面平行
3、定理運(yùn)用的關(guān)鍵是找(作)面內(nèi)的線與面外的線平行,途徑有:取中點(diǎn)利用平行四邊形或三角形中位線性質(zhì)等。
七、教學(xué)反思
本節(jié)“直線與平面平行的判定”是學(xué)生學(xué)習(xí)空間位置關(guān)系判定與性質(zhì)的起始課,同時(shí)也是學(xué)生開始掌握立體幾何演繹推理方法的重要階段,因此本節(jié)課的學(xué)習(xí)對(duì)于培養(yǎng)學(xué)生的空間想象能力和邏輯思維能力至關(guān)重要。
本節(jié)課的設(shè)計(jì)遵循“直觀感知——操作確認(rèn)——思辨論證”的認(rèn)知過程,注重引導(dǎo)學(xué)生通過觀察、操作交流、討論、有條理的思考和推理等活動(dòng),從多角度認(rèn)識(shí)直線和平面平行的判定方法,讓學(xué)生通過自主探究、合作交流,進(jìn)一步理解和掌握空間圖形的性質(zhì),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),提升合情推理能力和空間想象能力。
本節(jié)課設(shè)計(jì)側(cè)重于訓(xùn)練學(xué)生準(zhǔn)確使用數(shù)學(xué)符號(hào)語言、文字語言及圖形語言,并強(qiáng)化這幾種語言之間的轉(zhuǎn)換能力。例如,在課始的復(fù)習(xí)環(huán)節(jié),要求學(xué)生用三種語言進(jìn)行表達(dá);在動(dòng)手操作、定理探索過程以及定理描述中同樣重視這三種語言的應(yīng)用。對(duì)于例題的講解和分析,也注重引導(dǎo)學(xué)生運(yùn)用這三種語言進(jìn)行表達(dá)。
本節(jié)課在探求與認(rèn)識(shí)定理的過程中,始終堅(jiān)持直觀先行,感知先行的原則,鼓勵(lì)學(xué)生從身邊熟悉的數(shù)學(xué)現(xiàn)象出發(fā),感受生活中蘊(yùn)含的數(shù)學(xué)原理,體驗(yàn)數(shù)學(xué)即生活的道理。例如,讓學(xué)生列舉生活中能夠感知到的線面平行的例子,學(xué)生可能會(huì)提到日光燈與天花板、電線桿與墻面、轉(zhuǎn)動(dòng)的門等。同時(shí),教師也會(huì)列舉貼近生活的例子,如教師站立時(shí)與四周墻面平行,而向前或向后傾斜時(shí)則只與左右墻面平行,向左或向右傾斜時(shí)則與前后黑板面平行。隨后,引導(dǎo)學(xué)生從中提煉和概括出定理。
高中數(shù)學(xué)優(yōu)秀教案 16
教學(xué)目標(biāo):
1.掌握基本事件的概念;
2.正確理解古典概型的兩大特點(diǎn):有限性、等可能性;
3.掌握古典概型的概率計(jì)算公式,并能計(jì)算有關(guān)隨機(jī)事件的概率.
教學(xué)重點(diǎn):
掌握古典概型這一模型.
教學(xué)難點(diǎn):
如何判斷一個(gè)實(shí)驗(yàn)是否為古典概型,如何將實(shí)際問題轉(zhuǎn)化為古典概型問題.
教學(xué)方法:
問題教學(xué)、合作學(xué)習(xí)、講解法、多媒體輔助教學(xué).
教學(xué)過程:
一、問題情境
1.有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點(diǎn)向下置于桌上,現(xiàn)從中任意抽取一張,則抽到的牌為紅心的概率有多大?
二、學(xué)生活動(dòng)
1.進(jìn)行大量重復(fù)試驗(yàn),用“抽到紅心”這一事件的頻率估計(jì)概率,發(fā)現(xiàn)工作量較大且不夠準(zhǔn)確;
2.(1)共有“抽到紅心1” “抽到紅心2” “抽到紅心3” “抽到黑桃4” “抽到黑桃5”5種情況,由于是任意抽取的,可以認(rèn)為出現(xiàn)這5種情況的可能性都相等;
。2)6個(gè);即“1點(diǎn)”、“2點(diǎn)”、“3點(diǎn)”、“4點(diǎn)”、“5點(diǎn)”和“6點(diǎn)”,
這6種情況的可能性都相等;
三、建構(gòu)數(shù)學(xué)
1.介紹基本事件的概念,等可能基本事件的概念;
2.讓學(xué)生自己總結(jié)歸納古典概型的兩個(gè)特點(diǎn)(有限性)、(等可能性);
3.得出隨機(jī)事件發(fā)生的.概率公式:
四、數(shù)學(xué)運(yùn)用
1.例題.
例1
有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點(diǎn)向下置于桌上,現(xiàn)從中任意抽取2張共有多少個(gè)基本事件?(用枚舉法,列舉時(shí)要有序,要注意“不重不漏”)
探究(1):一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出2只球,共有多少個(gè)基本事件?該實(shí)驗(yàn)為古典概型嗎?(為什么對(duì)球進(jìn)行編號(hào)?)
探究(2):拋擲一枚硬幣2次有(正,反)、(正,正)、(反,反)3個(gè)基本事件,對(duì)嗎?
學(xué)生活動(dòng):探究(1)如果不對(duì)球進(jìn)行編號(hào),一次摸出2只球可能有兩白、一黑一白、兩黑三種情況,“摸到兩黑”與“摸到兩白”的可能性相同;而事實(shí)上“摸到兩白”的機(jī)會(huì)要比“摸到兩黑”的機(jī)會(huì)大.記白球?yàn)?,2,3號(hào),黑球?yàn)?,5號(hào),通過枚舉法發(fā)現(xiàn)有10個(gè)基本事件,而且每個(gè)基本事件發(fā)生的可能性相同.
探究(2):拋擲一枚硬幣2次,有(正,正)、(正,反)、(反,正)、(反,反)四個(gè)基本事件.
。ㄔO(shè)計(jì)意圖:加深對(duì)古典概型的特點(diǎn)之一等可能基本事件概念的理解.)
例2
一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中
一次摸出2只球,則摸到的兩只球都是白球的概率是多少?
問題:在運(yùn)用古典概型計(jì)算事件的概率時(shí)應(yīng)當(dāng)注意什么?
、倥袛喔怕誓P褪欠駷楣诺涓判
、谡页鲭S機(jī)事件A中包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù).
教師示范并總結(jié)用古典概型計(jì)算隨機(jī)事件的概率的步驟
例3
同時(shí)拋兩顆骰子,觀察向上的點(diǎn)數(shù),問:
。1)共有多少個(gè)不同的可能結(jié)果?
。2)點(diǎn)數(shù)之和是6的可能結(jié)果有多少種?
。3)點(diǎn)數(shù)之和是6的概率是多少?
問題:如何準(zhǔn)確的寫出“同時(shí)拋兩顆骰子”所有基本事件的個(gè)數(shù)?
學(xué)生活動(dòng):用課本第102頁(yè)圖3-2-2,可直觀的列出事件A中包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù).
問題:點(diǎn)數(shù)之和是3的倍數(shù)的可能結(jié)果有多少種?
(介紹圖表法)
例4
甲、乙兩人作出拳游戲(錘子、剪刀、布),求:
。1)平局的概率;(2)甲贏的概率;(3)乙贏的概率.
設(shè)計(jì)意圖:進(jìn)一步提高學(xué)生對(duì)將實(shí)際問題轉(zhuǎn)化為古典概型問題的能力.
2.練習(xí).
。1)一枚硬幣連擲3次,只有一次出現(xiàn)正面的概率為_________.
。2)在20瓶飲料中,有3瓶已過了保質(zhì)期,從中任取1瓶,取到已過保質(zhì)期的飲料的概率為_________..
。3)第103頁(yè)練習(xí)1,2.
。4)從1,2,3,…,9這9個(gè)數(shù)字中任取2個(gè)數(shù)字,
①2個(gè)數(shù)字都是奇數(shù)的概率為_________;
②2個(gè)數(shù)字之和為偶數(shù)的概率為_________.
五、要點(diǎn)歸納與方法小結(jié)
本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.基本事件,古典概型的概念和特點(diǎn);
2.古典概型概率計(jì)算公式以及注意事項(xiàng);
3.求基本事件總數(shù)常用的方法:列舉法、圖表法.
高中數(shù)學(xué)優(yōu)秀教案 17
函數(shù)的奇偶性是函數(shù)的重要性質(zhì),是對(duì)函數(shù)概念的深化。它把自變量取相反數(shù)時(shí)函數(shù)值間的關(guān)系定量地聯(lián)系在一起,反映在圖像上為:偶函數(shù)的圖像關(guān)于y軸對(duì)稱,奇函數(shù)的圖像關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱。這樣,就從數(shù)、形兩個(gè)角度對(duì)函數(shù)的奇偶性進(jìn)行了定量和定性的分析。
教材首先通過對(duì)具體函數(shù)的圖像及函數(shù)值對(duì)應(yīng)表歸納和抽象,概括出了函數(shù)奇偶性的準(zhǔn)確定義。然后,為深化對(duì)概念的理解,舉出了奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)的函數(shù)和非奇非偶函數(shù)的實(shí)例。最后,為加強(qiáng)前后聯(lián)系,從各個(gè)角度研究函數(shù)的性質(zhì),講清了奇偶性和單調(diào)性的聯(lián)系。這節(jié)課的重點(diǎn)是函數(shù)奇偶性的定義,難點(diǎn)是根據(jù)定義判斷函數(shù)的奇偶性。
教學(xué)目標(biāo)
1、通過具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗(yàn)數(shù)學(xué)概念的建立過程,培養(yǎng)其抽象的概括能力。
2、理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡(jiǎn)單函數(shù)的奇偶性。
3、在經(jīng)歷概念形成的過程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗(yàn)數(shù)學(xué)既是抽象的又是具體的。
任務(wù)分析
這節(jié)內(nèi)容學(xué)生在初中雖沒學(xué)過,但已經(jīng)學(xué)習(xí)過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù) ,k≠0,二次函數(shù)y=ax,a≠0,故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,以便于學(xué)生理解。在引入概念時(shí)始終結(jié)合具體函數(shù)的圖像,以增加直觀性,這樣更符合學(xué)生的認(rèn)知規(guī)律,同時(shí)為闡述奇、偶函數(shù)的幾何特征埋下了伏筆。
對(duì)于概念可從代數(shù)特征與幾何特征兩個(gè)角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點(diǎn)對(duì)稱的非空數(shù)集;對(duì)于在有定義的奇函數(shù)y=fx,一定有f0=0既是奇函數(shù),又是偶函數(shù)的函數(shù)有fx=0,x∈R在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念———非奇非偶函數(shù)。關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想效果。
教學(xué)設(shè)計(jì)
一、問題情景
1、觀察如下兩圖,思考并討論以下問題:
。1)這兩個(gè)函數(shù)圖像有什么共同特征?
。2)相應(yīng)的兩個(gè)函數(shù)值對(duì)應(yīng)表是如何體現(xiàn)這些特征的?
可以看到兩個(gè)函數(shù)的圖像都關(guān)于y軸對(duì)稱。
從函數(shù)值對(duì)應(yīng)表可以看到,當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的'兩個(gè)函數(shù)值相同。
對(duì)于函數(shù)fx=x,有f3=9=f3,f2=4=f2,f1=1=f1。事實(shí)上,對(duì)于R內(nèi)任意的一個(gè)x,都有fx=x2=x2=fx。此時(shí),稱函數(shù)y=x2為偶函數(shù)。
2、觀察函數(shù)fx=x和fx= 的圖像,并完成下面的兩個(gè)函數(shù)值對(duì)應(yīng)表,然后說出這兩個(gè)函數(shù)有什么共同特征。
可以看到兩個(gè)函數(shù)的圖像都關(guān)于原點(diǎn)對(duì)稱。函數(shù)圖像的這個(gè)特征,反映在解析式上就是:當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的函數(shù)值fx也是一對(duì)相反數(shù),即對(duì)任一x∈R都有fx=fx。此時(shí),稱函數(shù)y=fx為奇函數(shù)。
二、建立模型
由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義
1奇、偶函數(shù)的定義
如果對(duì)于函數(shù)fx的定義域內(nèi)任意一個(gè)x,都有fx=fx,那么函數(shù)fx就叫作奇函數(shù)。如果對(duì)于函數(shù)fx的定義域內(nèi)任意一個(gè)x,都有fx=fx,那么函數(shù)fx就叫作偶函數(shù)。
2、提出問題,組織學(xué)生討論
。1)如果定義在R上的函數(shù)fx滿足f2=f2,那么fx是偶函數(shù)嗎? fx不一定是偶函數(shù)
(2)奇、偶函數(shù)的圖像有什么特征?
。ㄆ、偶函數(shù)的圖像分別關(guān)于原點(diǎn)、y軸對(duì)稱)
3奇、偶函數(shù)的定義域有什么特征? (奇、偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱)
三、解釋應(yīng)用
[例 題]
1、判斷下列函數(shù)的奇偶性。
注:①規(guī)范解題格式;
、趯(duì)于5要注意定義域x∈1,1]。
2、已知:定義在R上的函數(shù)fx是奇函數(shù),當(dāng)x>0時(shí),fx=x1+x,求fx的表達(dá)式。
解:1任取x<0,則x>0,∴fx=x1x,
而fx是奇函數(shù),∴fx=fx!鄁x=x1x。
。2)當(dāng)x=0時(shí),f0=f0,∴f0=f0,故f0=0
3、已知:函數(shù)f(x是偶函數(shù),且在∞,0上是減函數(shù),判斷fx在0,+∞)上是增函數(shù),還是減函數(shù),并證明你的結(jié)論。
解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對(duì)稱,猜想f(x在0,+∞)上是增函數(shù),
證明如下:
任取x1>x2>0,則x1 ∵fx在∞,0上是減函數(shù),∴fx1>fx2。 又fx是偶函數(shù),∴fx1>fx2。 ∴f(x在0,+∞)上是增函數(shù)。 思考:奇函數(shù)或偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的兩個(gè)區(qū)間上的單調(diào)性有何關(guān)系? [練 習(xí)] 1、已知:函數(shù)fx是奇函數(shù),在[a,b]上是增函數(shù)b>a>0,問fx在[b,a]上的單調(diào)性如何。 2fx=x3|x|的大致圖像可能是 3、函數(shù)fx=ax2+bx+c,a,b,c∈R,當(dāng)a,b,c滿足什么條件時(shí),1函數(shù)fx是偶函數(shù)。2函數(shù)fx是奇函數(shù)。 4設(shè)fx,gx分別是R上的奇函數(shù)和偶函數(shù),并且fx+gx=xx+1,求fx,gx的解析式。 四、拓展延伸 1、有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個(gè)? 2設(shè)fx,gx分別是R上的奇函數(shù),偶函數(shù),試研究: 1Fx=fx·gx的奇偶性。 2Gx=|fx|+gx的奇偶性。 3、已知a∈R,fx=a ,試確定a的值,使fx是奇函數(shù)。 4、一個(gè)定義在R上的函數(shù),是否都可以表示為一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和的形式? 一、教學(xué)內(nèi)容分析 《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教A版)第44頁(yè)。-----《實(shí)習(xí)作業(yè)》。本節(jié)課程體現(xiàn)數(shù)學(xué)文化的特色,學(xué)生通過了解函數(shù)的發(fā)展歷史進(jìn)一步感受數(shù)學(xué)的魅力。學(xué)生在自己動(dòng)手收集、整理資料信息的過程中,對(duì)函數(shù)的概念有更深刻的理解;感受新的學(xué)習(xí)方式帶給他們的學(xué)習(xí)數(shù)學(xué)的樂趣。 二、學(xué)生學(xué)習(xí)情況分析 該內(nèi)容在《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教A版)第44頁(yè)。學(xué)生第一次完成《實(shí)習(xí)作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經(jīng)驗(yàn),所以需要教師精心設(shè)計(jì),做好準(zhǔn)備工作,充分體現(xiàn)教師的“導(dǎo)演”角色。特別在分組時(shí)注意學(xué)生的合理搭配(成績(jī)的好壞、家庭有無電腦、男女生比例、口頭表達(dá)能力等),選題時(shí),各組之間盡量不要重復(fù),盡量多地選不同的題目,可以讓所有的學(xué)生在學(xué)習(xí)共享的過程中受到更多的數(shù)學(xué)文化的熏陶。 三、設(shè)計(jì)思想 《標(biāo)準(zhǔn)》強(qiáng)調(diào)數(shù)學(xué)文化的重要性,體現(xiàn)數(shù)學(xué)的文化價(jià)值。數(shù)學(xué)教育不僅應(yīng)幫助學(xué)生學(xué)習(xí)和掌握數(shù)學(xué)知識(shí)與技能,還應(yīng)使學(xué)生了解數(shù)學(xué)的價(jià)值。通過教育,讓學(xué)生逐漸理解數(shù)學(xué)的思想方法、理性精神,感受數(shù)學(xué)家的創(chuàng)新精神,以及數(shù)學(xué)文明的'深刻內(nèi)涵。 四、教學(xué)目標(biāo) 了解函數(shù)概念的起源、發(fā)展歷程以及在此過程中起到關(guān)鍵作用的重要?dú)v史事件和人物; 2.體驗(yàn)合作學(xué)習(xí)的方式,通過合作學(xué)習(xí)品嘗分享獲得知識(shí)的快樂; 3.在合作形式的小組學(xué)習(xí)活動(dòng)中培養(yǎng)學(xué)生的領(lǐng)導(dǎo)意識(shí)、社會(huì)實(shí)踐技能和民主價(jià)值觀。 五、教學(xué)重點(diǎn)和難點(diǎn) 重點(diǎn):了解函數(shù)在數(shù)學(xué)中的核心地位,以及在生活里的廣泛應(yīng)用; 難點(diǎn):培養(yǎng)學(xué)生合作交流的能力以及收集和處理信息的能力。 六、教學(xué)過程設(shè)計(jì) 【課堂準(zhǔn)備】 1.分組:4~6人為一個(gè)實(shí)習(xí)小組,指定一人為組長(zhǎng)。教師需做好協(xié)調(diào)工作,確保每位學(xué)生均參與。 2.選題:根據(jù)個(gè)人興趣初步確定實(shí)習(xí)作業(yè)的題目。教師應(yīng)前往各小組了解選題情況,盡量選擇多樣化的題目。 教學(xué)目標(biāo) 。1)理解四種命題的概念; 。2)理解四種命題之間的相互關(guān)系,能由原命題寫出其他三種形式; 。3)理解一個(gè)命題的真假與其他三個(gè)命題真假間的關(guān)系; (4)初步掌握反證法的概念及反證法證題的基本步驟; 。5)通過對(duì)四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力; 。6)通過對(duì)四種命題的存在性和相對(duì)性的認(rèn)識(shí),進(jìn)行辯證唯物主義觀點(diǎn)教育; 。7)培養(yǎng)學(xué)生用反證法簡(jiǎn)單推理的技能,從而發(fā)展學(xué)生的思維能力。 教學(xué)重點(diǎn)和難點(diǎn) 重點(diǎn):四種命題之間的關(guān)系; 難點(diǎn):反證法的運(yùn)用。 教學(xué)過程設(shè)計(jì) 一、導(dǎo)入新課 【練習(xí)】 1、把下列命題改寫成“若p則q”的形式: 。1)同位角相等,兩直線平行; 。2)正方形的四條邊相等。 2、什么叫互逆命題?上述命題的逆命題是什么? 將命題寫成“若p則q”的形式,關(guān)鍵是找到命題的條件p與q結(jié)論。 如果第一個(gè)命題的條件是第二個(gè)命題的結(jié)論,且第一個(gè)命題的結(jié)論是第二個(gè)命題的條件,那么這兩個(gè)命題叫做互道命題。 上述命題的道命題是“若一個(gè)四邊形的四條邊相等,則它是正方形”和“若兩條直線平行,則同位角相等”。 值得指出的是原命題和逆命題是相對(duì)的。我們也可以把逆命題當(dāng)成原命題,去求它的逆命題。 3、原命題真,逆命題一定真嗎? “同位角相等,兩直線平行”這個(gè)原命題真,逆命題也真。但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真。 學(xué)生活動(dòng): 口答: 。1)若同位角相等,則兩直線平行; 。2)若一個(gè)四邊形是正方形,則它的四條邊相等。 設(shè)計(jì)意圖: 通過復(fù)習(xí)舊知識(shí),打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ)。 二、新課 【設(shè)問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題外,是否還可以構(gòu)成其它形式的`命題? 【講述】可以將原命題的條件和結(jié)論分別否定,構(gòu)成“同位角不相等,則兩直線不平行”,這個(gè)命題叫原命題的否命題。 【提問】你能由原命題“正方形的四條邊相等”構(gòu)成它的否命題嗎? 學(xué)生活動(dòng): 口答:若一個(gè)四邊形不是正方形,則它的四條邊不相等。 教師活動(dòng): 【講述】一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的條件的否定和結(jié)論的否定,這樣的兩個(gè)命題叫做互否命題。把其中一個(gè)命題叫做原命題,另一個(gè)命題叫做原命題的否命題。 若用p和q分別表示原命題的條件和結(jié)論,用┐p和┐q分別表示p和q的否定。 【板書】原命題:若p則q; 否命題:若┐p則q┐。 【提問】原命題真,否命題一定真嗎?舉例說明? 學(xué)生活動(dòng): 講論后回答: 原命題“同位角相等,兩直線平行”真,它的否命題“同位角不相等,兩直線不平行”不真。 原命題“正方形的四條邊相等”真,它的否命題“若一個(gè)四邊形不是正方形,則它的四條邊不相等”不真。 由此可以得原命題真,它的否命題不一定真。 設(shè)計(jì)意圖: 通過設(shè)問和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成否命題及判斷它們的真假,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。 教師活動(dòng): 【提問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題和否命題外,還可以不可以構(gòu)成別的命題? 學(xué)生活動(dòng): 討論后回答 【總結(jié)】可以將這個(gè)命題的條件和結(jié)論互換后再分別將新的條件和結(jié)論分別否定構(gòu)成命題“兩條直線不平行,則同位角不相等”,這個(gè)命題叫原命題的逆否命題。 教師活動(dòng): 【提問】原命題“正方形的四條邊相等”的逆否命題是什么? 學(xué)生活動(dòng): 口答:若一個(gè)四邊形的四條邊不相等,則不是正方形。 教師活動(dòng): 【講述】一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論的否定和條件的否定,這樣的兩個(gè)命題叫做互為逆否命題。把其中一個(gè)命題叫做原命題,另一個(gè)命題就叫做原命題的逆否命題。 原命題是“若p則q”,則逆否命題為“若┐q則┐p。 【提問】“兩條直線不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真? 學(xué)生活動(dòng): 討論后回答 這兩個(gè)逆否命題都真。 原命題真,逆否命題也真。 教師活動(dòng): 【提問】原命題的真假與其他三種命題的真 假有什么關(guān)系?舉例加以說明? 【總結(jié)】 1、原命題為真,它的逆命題不一定為真。 2、原命題為真,它的否命題不一定為真。 3、原命題為真,它的逆否命題一定為真。 設(shè)計(jì)意圖: 通過設(shè)問和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成逆否命題及判斷它們的真假,調(diào)動(dòng)學(xué)生學(xué)的積極性。 教師活動(dòng)總結(jié)。 PF2|2.P為等軸雙曲線x2y2a2上一點(diǎn), F1、F2為兩焦點(diǎn),O為雙曲線的中心,求的|PO|取值范圍。 3.在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,求拋物線的方程和點(diǎn)A的坐標(biāo)。 4.(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求|MA|+|MF|的最小值。 x2y211(2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的右焦點(diǎn),M在雙曲線右支上移動(dòng),當(dāng)|AM平面bcd。 變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點(diǎn),連結(jié)ef、fg、gh、he、ac、bd請(qǐng)分別找出圖中滿足線面平行位置關(guān)系的所有情況。(共6組線面平行) 變式二:在變式一的圖中如作pq?ef,使p點(diǎn)在線段ae上、q點(diǎn)在線段fc上,連結(jié)ph、qg,并繼續(xù)探究圖中所具有的線面平行位置關(guān)系?(在變式一的基礎(chǔ)上增加了4組線面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說明理由。 [設(shè)計(jì)意圖:設(shè)計(jì)二個(gè)變式訓(xùn)練,目的是通過問題探究、討論,思辨,及時(shí)鞏固定理,運(yùn)用定理,培養(yǎng)學(xué)生的識(shí)圖能力與邏輯推理能力。]例2:如圖,在正方體abcd—a1b1c1d1中,e、f分別是棱bc與c1d1中點(diǎn),求證:ef 學(xué)習(xí)目標(biāo) 明確排列與組合的聯(lián)系與區(qū)別,能判斷一個(gè)問題是排列問題還是組合問題;能運(yùn)用所學(xué)的排列組合知識(shí),正確地解決的實(shí)際問題。 學(xué)習(xí)過程 一、學(xué)前準(zhǔn)備 復(fù)習(xí): 1.(課本P28A13)填空: (1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是; (2)要從5件不同的禮物中選出3件分送3為同學(xué),不同方法的種數(shù)是; (3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是; (4)集合A有個(gè)元素,集合B有個(gè)元素,從兩個(gè)集合中各取1個(gè)元素,不同方法的種數(shù)是; 二、新課導(dǎo)學(xué) ◆探究新知(復(fù)習(xí)教材P14~P25,找出疑惑之處) 問題1:判斷下列問題哪個(gè)是排列問題,哪個(gè)是組合問題: (1)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè)安排游覽,有多少種不同的方法? (2)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè),并確定這2個(gè)風(fēng)景點(diǎn)的`游覽順序,有多少種不同的方法? ◆應(yīng)用示例 例1.從10個(gè)不同的文藝節(jié)目中選6個(gè)編成一個(gè)節(jié)目單,如果某女演員的獨(dú)唱節(jié)目一定不能排在第二個(gè)節(jié)目的位置上,則共有多少種不同的排法? 例2.7位同學(xué)站成一排,分別求出符合下列要求的不同排法的種數(shù)。 (1)甲站在中間; (2)甲、乙必須相鄰; (3)甲在乙的左邊(但不一定相鄰); (4)甲、乙必須相鄰,且丙不能站在排頭和排尾; (5)甲、乙、丙相鄰; (6)甲、乙不相鄰; (7)甲、乙、丙兩兩不相鄰。 ◆反饋練習(xí) 1. (課本P40A4)某學(xué)生邀請(qǐng)10位同學(xué)中的6位參加一項(xiàng)活動(dòng),其中兩位同學(xué)要么都請(qǐng),要么都不請(qǐng),共有多少種邀請(qǐng)方法? 2.5男5女排成一排,按下列要求各有多少種排法: (1)男女相間; (2)女生按指定順序排列 3.馬路上有12盞燈,為了節(jié)約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有______種。 當(dāng)堂檢測(cè) 1.某班新年聯(lián)歡會(huì)原定的5個(gè)節(jié)目已排成節(jié)目單,開演前又增加了兩個(gè)新節(jié)目。如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為( ) A.42 B.30 C.20 D.12 2.(課本P40A7)書架上有4本不同的數(shù)學(xué)書,5本不同的物理書,3本不同的化學(xué)書,全部排在同一層,如果不使同類的書分開,一共有多少種排法? 課后作業(yè) 1.(課本P41B2)用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的數(shù),問: (1)能夠組成多少個(gè)六位奇數(shù)? (2)能夠組成多少個(gè)大于201345的正整數(shù)? 2.(課本P41B4)某種產(chǎn)品的加工需要經(jīng)過5道工序,問: (1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法? (2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法? 一、課題: 人教版全日制普通高級(jí)中學(xué)教科書數(shù)學(xué)第一冊(cè)(上)《2.7對(duì)數(shù)》 二、指導(dǎo)思想與理論依據(jù): 《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:高中數(shù)學(xué)課程應(yīng)講清一些基本內(nèi)容的實(shí)際背景和應(yīng)用價(jià)值,開展“數(shù)學(xué)建模”的學(xué)習(xí)活動(dòng),把數(shù)學(xué)的應(yīng)用自然地融合在平常的教學(xué)中。任何一個(gè)數(shù)學(xué)概念的引入,總有它的現(xiàn)實(shí)或數(shù)學(xué)理論發(fā)展的需要。都應(yīng)強(qiáng)調(diào)它的現(xiàn)實(shí)背景、數(shù)學(xué)理論發(fā)展背景或數(shù)學(xué)發(fā)展歷史上的背景,這樣才能使教學(xué)內(nèi)容顯得自然和親切,讓學(xué)生感到知識(shí)的發(fā)展水到渠成而不是強(qiáng)加于人,從而有利于學(xué)生認(rèn)識(shí)數(shù)學(xué)內(nèi)容的.實(shí)際背景和應(yīng)用的價(jià)值。在教學(xué)設(shè)計(jì)時(shí),既要關(guān)注學(xué)生在數(shù)學(xué)情感態(tài)度和科學(xué)價(jià)值觀方面的發(fā)展,也要幫助學(xué)生理解和掌握數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,發(fā)展能力。在課程實(shí)施中,應(yīng)結(jié)合教學(xué)內(nèi)容介紹一些對(duì)數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物,用以反映數(shù)學(xué)在人類社會(huì)進(jìn)步、人類文化建設(shè)中的作用,同時(shí)反映社會(huì)發(fā)展對(duì)數(shù)學(xué)發(fā)展的促進(jìn)作用。 三、教材分析: 本節(jié)內(nèi)容主要學(xué)習(xí)對(duì)數(shù)的概念及其對(duì)數(shù)式與指數(shù)式的互化。它屬于函數(shù)領(lǐng)域的知識(shí)。而對(duì)數(shù)的概念是對(duì)數(shù)函數(shù)部分教學(xué)中的核心概念之一,而函數(shù)的思想方法貫穿在高中數(shù)學(xué)教學(xué)的始終。通過對(duì)數(shù)的學(xué)習(xí),可以解決數(shù)學(xué)中知道底數(shù)和冪值求指數(shù)的問題,以及對(duì)數(shù)函數(shù)的相關(guān)問題。 四、學(xué)情分析: 在ab=N(a>0,a≠1)中,知道底數(shù)和指數(shù)可以求冪值,那么知道底數(shù)和冪值如何求求指數(shù),從學(xué)生認(rèn)知的角度自然就產(chǎn)生了這樣的需要。因此,在前面學(xué)習(xí)指數(shù)的基礎(chǔ)上學(xué)習(xí)對(duì)數(shù)的概念是水到渠成的事。 五、教學(xué)目標(biāo): (一)教學(xué)知識(shí)點(diǎn): 1.對(duì)數(shù)的概念。 2.對(duì)數(shù)式與指數(shù)式的互化。 (二)能力目標(biāo): 1.理解對(duì)數(shù)的概念。 2.能夠進(jìn)行對(duì)數(shù)式與指數(shù)式的互化。 (三)德育滲透目標(biāo): 1.認(rèn)識(shí)事物之間的相互聯(lián)系與相互轉(zhuǎn)化, 2.用聯(lián)系的觀點(diǎn)看問題。 六、教學(xué)重點(diǎn)與難點(diǎn): 重點(diǎn)是對(duì)數(shù)定義,難點(diǎn)是對(duì)數(shù)概念的理解。 七、教學(xué)方法: 講練結(jié)合法八、教學(xué)流程: 問題情景(復(fù)習(xí)引入)——實(shí)例分析、形成概念(導(dǎo)入新課)——深刻認(rèn)識(shí)概念(對(duì)數(shù)式與指數(shù)式的互化)——變式分析、深化認(rèn)識(shí)(對(duì)數(shù)的性質(zhì)、對(duì)數(shù)恒等式,介紹自然對(duì)數(shù)及常用對(duì)數(shù))——練習(xí)小結(jié)、形成反思(例題,小結(jié)) 八、教學(xué)反思: 對(duì)本節(jié)內(nèi)容在進(jìn)行教學(xué)設(shè)計(jì)之前,本人反復(fù)閱讀了課程標(biāo)準(zhǔn)和教材,教材內(nèi)容的處理收到了一定的預(yù)期效果,尤其是練習(xí)的處理,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識(shí),達(dá)到了設(shè)計(jì)中所預(yù)想的目標(biāo)。然而還有一些缺憾:對(duì)本節(jié)內(nèi)容,難度不高,本人認(rèn)為,教師的干預(yù)(講解)還是太多。在以后的教學(xué)中,對(duì)于一些較簡(jiǎn)單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來設(shè)計(jì)課堂教學(xué),關(guān)注學(xué)生個(gè)性和潛能的發(fā)展,使教學(xué)過程更加切合《課程標(biāo)準(zhǔn)》的要求。 對(duì)于本教學(xué)設(shè)計(jì),時(shí)間倉(cāng)促,不足之處在所難免,期待與各位同仁交流。 教學(xué)目標(biāo) 1.明確等差數(shù)列的定義. 2.掌握等差數(shù)列的通項(xiàng)公式,會(huì)解決知道中的三個(gè),求另外一個(gè)的問題 3.培養(yǎng)學(xué)生觀察、歸納能力. 教學(xué)重點(diǎn) 1. 等差數(shù)列的概念; 2. 等差數(shù)列的通項(xiàng)公式 教學(xué)難點(diǎn) 等差數(shù)列“等差”特點(diǎn)的理解、把握和應(yīng)用 教具準(zhǔn)備 投影片1張 教學(xué)過程 (I)復(fù)習(xí)回顧 師:上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法通項(xiàng)公式和遞推公式。這兩個(gè)公式從不同的角度反映數(shù)列的特點(diǎn),下面看一些例子。(放投影片) (Ⅱ)講授新課 師:看這些數(shù)列有什么共同的'特點(diǎn)? 1,2,3,4,5,6; ① 10,8,6,4,2,…; ② 生:積極思考,找上述數(shù)列共同特點(diǎn)。 對(duì)于數(shù)列①(1≤n≤6);(2≤n≤6) 對(duì)于數(shù)列②-2n(n≥1)(n≥2) 對(duì)于數(shù)列③(n≥1)(n≥2) 共同特點(diǎn):從第2項(xiàng)起,第一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)。 師:也就是說,這些數(shù)列均具有相鄰兩項(xiàng)之差“相等”的特點(diǎn)。具有這種特點(diǎn)的數(shù)列,我們把它叫做等差數(shù)。 一、定義: 等差數(shù)列:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與空的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。 如:上述3個(gè)數(shù)列都是等差數(shù)列,它們的公差依次是1,-2, 。 二、等差數(shù)列的通項(xiàng)公式 師:等差數(shù)列定義是由一數(shù)列相鄰兩項(xiàng)之間關(guān)系而得。若一等差數(shù)列的首項(xiàng)是,公差是d,則據(jù)其定義可得: 若將這n-1個(gè)等式相加,則可得: 即:即:即:…… 由此可得:師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng)和公差d,便可求得其通項(xiàng)。 如數(shù)列①(1≤n≤6) 數(shù)列②:(n≥1) 數(shù)列③:(n≥1) 由上述關(guān)系還可得:即:則:=如:三、例題講解 例1:(1)求等差數(shù)列8,5,2…的第20項(xiàng) (2)-401是不是等差數(shù)列-5,-9,-13…的項(xiàng)?如果是,是第幾項(xiàng)? 解:(1)由n=20,得(2)由得數(shù)列通項(xiàng)公式為:由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個(gè)數(shù)列的第100項(xiàng)。 (Ⅲ)課堂練習(xí) 生:(口答)課本P118練習(xí)3 (書面練習(xí))課本P117練習(xí)1 師:組織學(xué)生自評(píng)練習(xí)(同桌討論) (Ⅳ)課時(shí)小結(jié) 師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。 即(n≥2) 、诘炔顢(shù)列通項(xiàng)公式 (n≥1) 推導(dǎo)出公式:(V)課后作業(yè) 一、課本P118習(xí)題3.2 1,2 二、1.預(yù)習(xí)內(nèi)容:課本P116例2P117例4 2.預(yù)習(xí)提綱: ①如何應(yīng)用等差數(shù)列的定義及通項(xiàng)公式解決一些相關(guān)問題? 、诘炔顢(shù)列有哪些性質(zhì)? 學(xué)習(xí)目標(biāo) 明確排列與組合的聯(lián)系與區(qū)別,能判斷一個(gè)問題是排列問題還是組合問題;能運(yùn)用所學(xué)的排列組合知識(shí),正確地解決的實(shí)際問題. 學(xué)習(xí)過程 一、學(xué)前準(zhǔn)備 復(fù)習(xí): 1.(課本P28A13)填空: (1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是 ; (2)要從5件不同的禮物中選出3件分送3為同學(xué),不同方法的種數(shù)是 ; (3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是 ; (4)集合A有個(gè) 元素,集合B有 個(gè)元素,從兩個(gè)集合中各取1個(gè)元素,不同方法的種數(shù)是 ; 二、新課導(dǎo)學(xué) ◆探究新知(復(fù)習(xí)教材P14~P25,找出疑惑之處) 問題1:判斷下列問題哪個(gè)是排列問題,哪個(gè)是組合問題: (1)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè)安排游覽,有多少種不同的方法? (2)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè),并確定這2個(gè)風(fēng)景點(diǎn)的.游覽順序,有多少種不同的方法? ◆應(yīng)用示例 例1.從10個(gè)不同的文藝節(jié)目中選6個(gè)編成一個(gè)節(jié)目單,如果某女演員的獨(dú)唱節(jié)目一定不能排在第二個(gè)節(jié)目的位置上,則共有多少種不同的排法? 例2.7位同學(xué)站成一排,分別求出符合下列要求的不同排法的種數(shù). (1) 甲站在中間; (2)甲、乙必須相鄰; (3)甲在乙的左邊(但不一定相鄰); (4)甲、乙必須相鄰,且丙不能站在排頭和排尾; (5)甲、乙、丙相鄰; (6)甲、乙不相鄰; (7)甲、乙、丙兩兩不相鄰。 ◆反饋練習(xí) 1. (課本P40A4)某學(xué)生邀請(qǐng)10位同學(xué)中的6位參加一項(xiàng)活動(dòng),其中兩位同學(xué)要么都請(qǐng),要么都不請(qǐng),共有多少種邀請(qǐng)方法? 2.5男5女排成一排,按下列要求各有多少種排法:(1)男女相間;(2)女生按指定順序排列 3.馬路上有12盞燈,為了節(jié)約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有______種. 當(dāng)堂檢測(cè) 1.某班新年聯(lián)歡會(huì)原定的5個(gè)節(jié)目已排成節(jié)目單,開演前又增加了兩個(gè)新節(jié)目.如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為( ) A.42 B.30 C.20 D.12 2.(課本P40A7)書架上有4本不同的數(shù)學(xué)書,5本不同的物理書,3本不同的化學(xué)書,全部排在同一層,如果不使同類的書分開,一共有多少種排法? 課后作業(yè) 1.(課本P41B2)用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的數(shù),問:(1)能夠組成多少個(gè)六位奇數(shù)?(2)能夠組成多少個(gè)大于201345的正整數(shù)? 2.(課本P41B4)某種產(chǎn)品的加工需要經(jīng)過5道工序,問:(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法? 教學(xué)目標(biāo) 1.明確等差數(shù)列的定義. 2.掌握等差數(shù)列的通項(xiàng)公式,會(huì)解決知道中的三個(gè),求另外一個(gè)的問題 3.培養(yǎng)學(xué)生觀察、歸納能力. 教學(xué)重點(diǎn) 1.等差數(shù)列的概念; 2.等差數(shù)列的通項(xiàng)公式 教學(xué)難點(diǎn) 等差數(shù)列“等差”特點(diǎn)的理解、把握和應(yīng)用 教具準(zhǔn)備 投影片1張 教學(xué)過程 (I)復(fù)習(xí)回顧 師:前兩節(jié)課我們共同探討了數(shù)列的`定義以及描述數(shù)列的兩種方式——通項(xiàng)公式和遞推公式。這兩種公式從不同側(cè)面揭示了數(shù)列的特性,接下來讓我們通過一些例子來進(jìn)一步理解。(放映幻燈片) (Ⅱ)講授新課 師:看這些數(shù)列有什么共同的特點(diǎn)? 1,2,3,4,5,6; ① 10,8,6,4,2,…; ② 生:積極思考,找上述數(shù)列共同特點(diǎn)。 對(duì)于數(shù)列①(1≤n≤6);(2≤n≤6) 對(duì)于數(shù)列②-2n(n≥1)(n≥2) 對(duì)于數(shù)列③(n≥1)(n≥2) 共同特點(diǎn):從第2項(xiàng)起,第一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)。 師:也就是說,這些數(shù)列均具有相鄰兩項(xiàng)之差“相同”的特點(diǎn)。具有這種特點(diǎn)的數(shù)列,我們稱之為等差數(shù)列。 一、定義: 等差數(shù)列:通常情況下,如果一個(gè)數(shù)列從第二項(xiàng)開始,每一項(xiàng)與其前一項(xiàng)之差都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就稱為等差數(shù)列,這個(gè)常數(shù)被稱為等差數(shù)列的公差,通常用字母d表示。 如:上述3個(gè)數(shù)列都是等差數(shù)列,它們的公差依次是1,-2 。 二、等差數(shù)列的通項(xiàng)公式 師:若一等差數(shù)列的首項(xiàng)為,公差為d,則根據(jù)其定義可得: 若將這n-1個(gè)等式相加,則可得: 即:即:即:…… 由此可得:師:顯然,若已知一個(gè)數(shù)列為等差數(shù)列,則只需知道其首項(xiàng)和公差d,即可求得其通項(xiàng)。 如數(shù)列①(1≤n≤6) 數(shù)列②:(n≥1) 數(shù)列③:(n≥1) 由上述關(guān)系還可得:即:則:=如: 三、例題講解 例1:(1)求等差數(shù)列8,5,2…的第20項(xiàng) (2)-401是不是等差數(shù)列-5,-9,-13…的項(xiàng)?如果是,是第幾項(xiàng)? 解:由n=20,得(2)由得數(shù)列通項(xiàng)公式為:根據(jù)題意可知,本題旨在確認(rèn)是否存在正整數(shù)n,使得-401=-5-4(n-1)成立,解之得n=100,即-401是該數(shù)列的第100項(xiàng)。 (Ⅲ)課堂練習(xí) 生:(口答)課本P118練習(xí)3 (書面練習(xí))課本P117練習(xí)1 師:組織學(xué)生自評(píng)練習(xí)(同桌討論) (Ⅳ)課時(shí)小結(jié) 師:本節(jié)主要內(nèi)容為: 、俚炔顢(shù)列定義。 即(n≥2) 、诘炔顢(shù)列通項(xiàng)公式(n≥1) 推導(dǎo)出公式: (V)課后作業(yè) 一、課本P118習(xí)題3.2 1,2 二、1.預(yù)習(xí)內(nèi)容:課本P116例2P117例4 2.預(yù)習(xí)提綱: ①如何應(yīng)用等差數(shù)列的定義及通項(xiàng)公式解決一些相關(guān)問題? 、诘炔顢(shù)列有哪些性質(zhì)? 一、教學(xué)內(nèi)容分析: 本節(jié)教材選自人教a版數(shù)學(xué)必修②第二章第一節(jié)課,本節(jié)內(nèi)容在立幾學(xué)習(xí)中起著承上啟下的作用,具有重要的意義與地位。本節(jié)課是在前面已學(xué)空間點(diǎn)、線、面位置關(guān)系的基礎(chǔ)作為學(xué)習(xí)的出發(fā)點(diǎn),結(jié)合有關(guān)的實(shí)物模型,通過直觀感知、操作確認(rèn)(合情推理,不要求證明)歸納出直線與平面平行的判定定理。本節(jié)課的學(xué)習(xí)對(duì)培養(yǎng)學(xué)生空間感與邏輯推理能力起到重要作用,特別是對(duì)線線平行、面面平行的判定的學(xué)習(xí)作用重大。 二、學(xué)生學(xué)習(xí)情況分析: 任教的學(xué)生在年段屬中上程度,學(xué)生學(xué)習(xí)興趣較高,但學(xué)習(xí)立幾所具備的語言表達(dá)及空間感與空間想象能力相對(duì)不足,學(xué)習(xí)方面有一定困難。 三、設(shè)計(jì)思想 本節(jié)課的設(shè)計(jì)遵循從具體到抽象的原則,適當(dāng)運(yùn)用多媒體輔助教學(xué)手段,借助實(shí)物模型,通過直觀感知,操作確認(rèn),合情推理,歸納出直線與平面平行的判定定理,將合情推理與演繹推理有機(jī)結(jié)合,讓學(xué)生在觀察分析、自主探索、合作交流的過程中,揭示直線與平面平行的判定、理解數(shù)學(xué)的概念,領(lǐng)會(huì)數(shù)學(xué)的思想方法,養(yǎng)成積極主動(dòng)、勇于探索、自主學(xué)習(xí)的學(xué)習(xí)方式,發(fā)展學(xué)生的空間觀念和空間想象力,提高學(xué)生的數(shù)學(xué)邏輯思維能力。 四、教學(xué)目標(biāo) 通過直觀感知——觀察——操作確認(rèn)的認(rèn)識(shí)方法理解并掌握直線與平面平行的判定定理,掌握直線與平面平行的畫法并能準(zhǔn)確使用數(shù)學(xué)符號(hào)語言、文字語言表述判定定理。培養(yǎng)學(xué)生觀察、探究、發(fā)現(xiàn)的能力和空間想象能力、邏輯思維能力。讓學(xué)生在觀察、探究、發(fā)現(xiàn)中學(xué)習(xí),在自主合作、交流中學(xué)習(xí),體驗(yàn)學(xué)習(xí)的樂趣,增強(qiáng)自信心,樹立積極的學(xué)習(xí)態(tài)度,提高學(xué)習(xí)的自我效能感。 五、教學(xué)重點(diǎn)與難點(diǎn) 重點(diǎn)是判定定理的引入與理解,難點(diǎn)是判定定理的應(yīng)用及立幾空間感、空間觀念的形成與邏輯思維能力的培養(yǎng)。 六、教學(xué)過程設(shè)計(jì) (一)知識(shí)準(zhǔn)備、新課引入 提問1:根據(jù)公共點(diǎn)的情況,空間中直線a和平面?有哪幾種位置關(guān)系?并完成下表:(多媒體幻燈片演示) a?? 提問2:根據(jù)直線與平面平行的定義(沒有公共點(diǎn))來判定直線與平面平行你認(rèn)為方便嗎?談?wù)勀愕目捶,并指出是否有別的判定途徑。 [設(shè)計(jì)意圖:通過提問,學(xué)生復(fù)習(xí)并歸納空間直線與平面位置關(guān)系引入本節(jié)課題,并為探尋直線與平面平行判定定理作好準(zhǔn)備。] (二)判定定理的探求過程 1、直觀感知 提問:根據(jù)同學(xué)們?nèi)粘I畹挠^察,你們能感知到并舉出直線與平面平行的具體事例嗎? 生1:例舉日光燈與天花板,樹立的電線桿與墻面。 生2:門轉(zhuǎn)動(dòng)到離開門框的任何位置時(shí),門的邊緣線始終與門框所在的平面平行(由學(xué)生到教室門前作演示),然后教師用多媒體動(dòng)畫演示。 [學(xué)情預(yù)設(shè):此處的預(yù)設(shè)與生成應(yīng)當(dāng)是很自然的.,但老師要預(yù)見到可能出現(xiàn)的情況如電線桿與墻面可能共面的情形及門要離開門框的位置等情形。] 2、動(dòng)手實(shí)踐 教師取出預(yù)先準(zhǔn)備好的直角梯形泡沫板演示:當(dāng)把互相平行的一邊放在講臺(tái)桌面上并轉(zhuǎn)動(dòng),觀察另一邊與桌面的位置給人以平行的感覺,而當(dāng)把直角腰放在桌面上并轉(zhuǎn)動(dòng),觀察另一邊與桌面給人的印象就不平行。又如老師直立講臺(tái),則大家會(huì)感覺到老師(視為線)與四周墻面平行,如老師向前或后傾斜則感覺老師(視為線)與左、右墻面平行,如老師向左、右傾斜,則感覺老師(視為線)與前、后墻面平行(老師也可用事先準(zhǔn)備的木條放在講臺(tái)桌上作上述情形的演示)。 [設(shè)計(jì)意圖:設(shè)置這樣動(dòng)手實(shí)踐的情境,是為了讓學(xué)生更清楚地看到線面平行與否的關(guān)鍵因素是什么,使學(xué)生學(xué)在情境中,思在情理中,感悟在內(nèi)心中,學(xué)自己身邊的數(shù)學(xué),領(lǐng)悟空間觀念與空間圖形性質(zhì)。] 3、探究思考 (1)上述演示的直線與平面位置關(guān)系為何有如此的不同?關(guān)鍵是什么因素起了作用呢?通過觀察感知發(fā)現(xiàn)直線與平面平行,關(guān)鍵是三個(gè)要素:①平面外一條線②我們把直線與平面相交或平行的位置關(guān)系統(tǒng)稱為直線在平面外,用符號(hào)表示為平面內(nèi)一條直線③這兩條直線平行 (2)如果平面外的直線a與平面?內(nèi)的一條直線b平行,那么直線a與平面?平行嗎? 4、歸納確認(rèn):(多媒體幻燈片演示) 直線和平面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線和這個(gè)平面平行。 簡(jiǎn)單概括:(內(nèi)外)線線平行?線面平行a符號(hào)表示:ba||? a||b?? 溫馨提示: 作用:判定或證明線面平行。 關(guān)鍵:在平面內(nèi)找(或作)出一條直線與面外的直線平行。 思想:空間問題轉(zhuǎn)化為平面問題 (三)定理運(yùn)用,問題探究(多媒體幻燈片演示) 1、想一想: (1)判斷下列命題的真假?說明理由: 、偃绻粭l直線不在平面內(nèi),則這條直線就與平面平行() 、谶^直線外一點(diǎn)可以作無數(shù)個(gè)平面與這條直線平行( ) 、垡恢本上有二個(gè)點(diǎn)到平面的距離相等,則這條直線與平面平行( ) (2)若直線a與平面?內(nèi)無數(shù)條直線平行,則a與?的位置關(guān)系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [學(xué)情預(yù)設(shè):設(shè)計(jì)這組問題目的是強(qiáng)調(diào)定理中三個(gè)條件的重要性,同時(shí)預(yù)設(shè)(1)中的③學(xué)生可能認(rèn)為正確的,這樣就無法達(dá)到老師的預(yù)設(shè)與生成的目的,這時(shí)教師要引導(dǎo)學(xué)生思考,讓學(xué)生想象的空間更廣闊些。此外教師可用預(yù)先準(zhǔn)備好的羊毛針與泡沫板進(jìn)行演示,讓羊毛針穿過泡沫板以舉不平行的反例,如果有的學(xué)生空間想象力強(qiáng),能按老師的要求生成正確的結(jié)果則就由個(gè)別學(xué)生進(jìn)行演示。] 2、作一作: 設(shè)a、b是二異面直線,則過a、b外一點(diǎn)p且與a、b都平行的平面存在嗎?若存在請(qǐng)畫出平面,不存在說明理由? 先由學(xué)生討論交流,教師提問,然后教師總結(jié),并用準(zhǔn)備好的羊毛針、鐵線、泡沫板等演示平面的形成過程,最后借多媒體展示作圖的動(dòng)畫過程。 [設(shè)計(jì)意圖:這是一道動(dòng)手操作的問題,不僅是為了拓展加深對(duì)定理的認(rèn)識(shí),更重要的是培養(yǎng)學(xué)生空間感與思維的嚴(yán)謹(jǐn)性。] 3、證一證: 例1(見課本60頁(yè)例1):已知空間四邊形abcd中,e、f分別是ab、ad的中點(diǎn),求證:ef ||平面bcd。 變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點(diǎn),連結(jié)ef、fg、gh、he、ac、bd請(qǐng)分別找出圖中滿足線面平行位置關(guān)系的所有情況。(共6組線面平行)變式二:在變式一的圖中如作pq?ef,使p點(diǎn)在線段ae上、q點(diǎn)在線段fc上,連結(jié)ph、qg,并繼續(xù)探究圖中所具有的線面平行位置關(guān)系?(在變式一的基礎(chǔ)上增加了4組線面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說明理由。 [設(shè)計(jì)意圖:設(shè)計(jì)二個(gè)變式訓(xùn)練,目的是通過問題探究、討論,思辨,及時(shí)鞏固定理,運(yùn)用定理,培養(yǎng)學(xué)生的識(shí)圖能力與邏輯推理能力。]例2:如圖,在正方體abcd—a1b1c1d1中,e、f分別是棱bc與c1d1中點(diǎn),求證:ef ||平面bdd1b1分析:根據(jù)判定定理必須在平 面bdd1b1內(nèi)找(作)一條線與ef平行,聯(lián)想到中點(diǎn)問題找中點(diǎn)解決的方法,可以取bd或b1d1中點(diǎn)而證之。 思路一:取bd中點(diǎn)g連d1g、eg,可證d1gef為平行四邊形。 思路二:取d1b1中點(diǎn)h連hb、hf,可證hfeb為平行四邊形。 [知識(shí)鏈接:根據(jù)空間問題平面化的思想,因此把找空間平行直線問題轉(zhuǎn)化為找平行四邊形或三角形中位線問題,這樣就自然想到了找中點(diǎn)。平行問題找中點(diǎn)解決是個(gè)好途徑好方法。這種思想方法是解決立幾論證平行問題,培養(yǎng)邏輯思維能力的重要思想方法] 4、練一練: 練習(xí)1:見課本6頁(yè)練習(xí)1、2 練習(xí)2:將兩個(gè)全等的正方形abcd和abef拼在一起,設(shè)m、n分別為ac、bf中點(diǎn),求證:mn ||平面bce。 變式:若將練習(xí)2中m、n改為ac、bf分點(diǎn)且am = fn,試問結(jié)論仍成立嗎?試證之。 [設(shè)計(jì)意圖:設(shè)計(jì)這組練習(xí),目的是為了鞏固與深化定理的運(yùn)用,特別是通過練習(xí)2及其變式的訓(xùn)練,讓學(xué)生能在復(fù)雜的圖形中去識(shí)圖,去尋找分析問題、解決問題的途徑與方法,以達(dá)到逐步培養(yǎng)空間感與邏輯思維能力。] (四)總結(jié) 先由學(xué)生口頭總結(jié),然后教師歸納總結(jié)(由多媒體幻燈片展示): 1、線面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線與這個(gè)平面平行。 2、定理的符號(hào)表示:ba||? a||b??簡(jiǎn)述:(內(nèi)外)線線平行則線面平行 3、定理運(yùn)用的關(guān)鍵是找(作)面內(nèi)的線與面外的線平行,途徑有:取中點(diǎn)利用平行四邊形或三角形中位線性質(zhì)等。 七、教學(xué)反思 本節(jié)“直線與平面平行的判定”是學(xué)生學(xué)習(xí)空間位置關(guān)系的判定與性質(zhì)的第一節(jié)課,也是學(xué)生開始學(xué)習(xí)立幾演澤推理論述的思維方式方法,因此本節(jié)課學(xué)習(xí)對(duì)發(fā)展學(xué)生的空間觀念和邏輯思維能力是非常重要的。 本節(jié)課的設(shè)計(jì)遵循“直觀感知——操作確認(rèn)——思辯論證”的認(rèn)識(shí)過程,注重引導(dǎo)學(xué)生通過觀察、操作交流、討論、有條理的思考和推理等活動(dòng),從多角度認(rèn)識(shí)直線和平面平行的判定方法,讓學(xué)生通過自主探索、合作交流,進(jìn)一步認(rèn)識(shí)和掌握空間圖形的性質(zhì),積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),發(fā)展合情推理、發(fā)展空間觀念與推理能力。 本節(jié)課的設(shè)計(jì)注重訓(xùn)練學(xué)生準(zhǔn)確表達(dá)數(shù)學(xué)符號(hào)語言、文字語言及圖形語言,加強(qiáng)各種語言的互譯。比如上課開始時(shí)的復(fù)習(xí)引入,讓學(xué)生用三種語言的表達(dá),動(dòng)手實(shí)踐、定理探求過程以及定理描述也注重三種語言的表達(dá),對(duì)例題的講解與分析也注意指導(dǎo)學(xué)生三種語言的表達(dá)。 本節(jié)課對(duì)定理的探求與認(rèn)識(shí)過程的設(shè)計(jì)始終貫徹直觀在先,感知在先,學(xué)自己身邊的數(shù)學(xué),感知生活中包涵的數(shù)學(xué)現(xiàn)象與數(shù)學(xué)原理,體驗(yàn)數(shù)學(xué)即生活的道理,比如讓學(xué)生舉生活中能感知線面平行的例子,學(xué)生會(huì)舉出日光燈與天花板,電線桿與墻面,轉(zhuǎn)動(dòng)的門等等,同時(shí)老師的舉例也很貼進(jìn)生活,如老師直立時(shí)與四周墻面平行,而向前、向后傾斜則只與左右墻面平行,而向左、右傾斜則與前后黑板面平行。然后引導(dǎo)學(xué)生從中抽象概括出定理。 教學(xué)目標(biāo): 1、了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系。 2、會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù)。 3、在嘗試、探索求反函數(shù)的過程中,深化對(duì)概念的認(rèn)識(shí),總結(jié)出求反函數(shù)的一般步驟,加深對(duì)函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認(rèn)識(shí)。 4、進(jìn)一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點(diǎn)分析問題,培養(yǎng)抽象、概括的能力。 教學(xué)重點(diǎn): 求反函數(shù)的方法。 教學(xué)難點(diǎn): 反函數(shù)的概念。 教學(xué)過程: 一、創(chuàng)設(shè)情境,引入新課 1、復(fù)習(xí)提問 、俸瘮(shù)的概念 ②y=f(x)中各變量的意義 2、同學(xué)們?cè)谖锢碚n學(xué)過勻速直線運(yùn)動(dòng)的位移和時(shí)間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是時(shí)間t的函數(shù);在t=中,時(shí)間t是位移S的函數(shù)。在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù)。什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容。 3、板書課題 由實(shí)際問題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo)。這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性。 二、實(shí)例分析,組織探究 1、問題組一: (用投影給出函數(shù)與;與()的圖象) (1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對(duì)稱;與()的圖象也關(guān)于直線y=x對(duì)稱。是求一個(gè)數(shù)立方的運(yùn)算,而是求一個(gè)數(shù)立方根的運(yùn)算,它們互為逆運(yùn)算。同樣,與()也互為逆運(yùn)算。) (2)由,已知y能否求x? 。3)是否是一個(gè)函數(shù)?它與有何關(guān)系? 。4)與有何聯(lián)系? 2、問題組二: 。1)函數(shù)y=2x1(x是自變量)與函數(shù)x=2y1(y是自變量)是否是同一函數(shù)? (2)函數(shù)(x是自變量)與函數(shù)x=2y1(y是自變量)是否是同一函數(shù)? 。3)函數(shù)()的定義域與函數(shù)()的值域有什么關(guān)系? 3、滲透反函數(shù)的概念。 (教師點(diǎn)明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點(diǎn)) 從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認(rèn)知特點(diǎn),有利于培養(yǎng)學(xué)生抽象、概括的能力。 通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識(shí),在"最近發(fā)展區(qū)"設(shè)計(jì)問題,使學(xué)生對(duì)反函數(shù)有一個(gè)直觀的粗略印象,為進(jìn)一步抽象反函數(shù)的概念奠定基礎(chǔ)。 三、師生互動(dòng),歸納定義 1、(根據(jù)上述實(shí)例,教師與學(xué)生共同歸納出反函數(shù)的定義) 函數(shù)y=f(x)(x∈A)中,設(shè)它的值域?yàn)镃。我們根據(jù)這個(gè)函數(shù)中x,y的關(guān)系,用y把x表示出來,得到x=j(y)。如果對(duì)于y在C中的任何一個(gè)值,通過x=j(y),x在A中都有的值和它對(duì)應(yīng),那么,x=j(y)就表示y是自變量,x是自變量y的函數(shù)。這樣的函數(shù)x=j(y)(y∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù)。記作:?紤]到"用x表示自變量,y表示函數(shù)"的習(xí)慣,將中的x與y對(duì)調(diào)寫成。 2、引導(dǎo)分析: 1)反函數(shù)也是函數(shù); 2)對(duì)應(yīng)法則為互逆運(yùn)算; 3)定義中的"如果"意味著對(duì)于一個(gè)任意的函數(shù)y=f(x)來說不一定有反函數(shù); 4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域; 5)函數(shù)y=f(x)與x=f(y)互為反函數(shù); 6)要理解好符號(hào)f; 7)交換變量x、y的原因。 3、兩次轉(zhuǎn)換x、y的對(duì)應(yīng)關(guān)系 (原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y是等價(jià)的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價(jià)的) 4、函數(shù)與其反函數(shù)的'關(guān)系 函數(shù)y=f(x) 函數(shù) 定義域 A C 值域 C A 四、應(yīng)用解題,總結(jié)步驟 1、(投影例題) 【例1】求下列函數(shù)的反函數(shù) 。1)y=3x—1(2)y=x1 【例2】求函數(shù)的反函數(shù)。 。ń處煱鍟}過程后,由學(xué)生總結(jié)求反函數(shù)步驟。) 2、總結(jié)求函數(shù)反函數(shù)的步驟: 1°由y=f(x)反解出x=f(y)。 2°把x=f(y)中x與y互換得。 3°寫出反函數(shù)的定義域。 。ê(jiǎn)記為:反解、互換、寫出反函數(shù)的定義域)【例3】 。1)有沒有反函數(shù)? 。2)的反函數(shù)是________。 。3)(x<0)的反函數(shù)是__________。 在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對(duì)性地體會(huì)定義的特點(diǎn),進(jìn)而對(duì)定義有更深刻的認(rèn)識(shí),與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會(huì)反函數(shù)。在剖析定義的過程中,讓學(xué)生體會(huì)函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對(duì)數(shù)學(xué)的符號(hào)語言有更好的把握。 通過動(dòng)畫演示,表格對(duì)照,使學(xué)生對(duì)反函數(shù)定義從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),從而消化理解。 通過對(duì)具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時(shí)歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力。 題目的設(shè)計(jì)遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進(jìn)。并體現(xiàn)了對(duì)定義的反思理解。學(xué)生思考練習(xí),師生共同分析糾正。 五、鞏固強(qiáng)化,評(píng)價(jià)反饋 1、已知函數(shù)y=f(x)存在反函數(shù),求它的反函數(shù)y=f(x) 。1)y=—2x3(xR)(2)y=—(xR,且x) 。3)y=(xR,且x) 2、已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值。 五、反思小結(jié),再度設(shè)疑 本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟;榉春瘮(shù)的兩個(gè)函數(shù)的圖象到底有什么特點(diǎn)呢?為什么具有這樣的特點(diǎn)呢?我們將在下節(jié)研究。 。ㄗ寣W(xué)生談一下本節(jié)課的學(xué)習(xí)體會(huì),教師適時(shí)點(diǎn)撥) 進(jìn)一步強(qiáng)化反函數(shù)的概念,并能正確求出反函數(shù)。反饋學(xué)生對(duì)知識(shí)的掌握情況,評(píng)價(jià)學(xué)生對(duì)學(xué)習(xí)目標(biāo)的落實(shí)程度。具體實(shí)踐中可采取同學(xué)板演、分組競(jìng)賽等多種形式調(diào)動(dòng)學(xué)生的積極性。"問題是數(shù)學(xué)的心臟"學(xué)生帶著問題走進(jìn)課堂又帶著新的問題走出課堂。 六、作業(yè) 習(xí)題2.4第1題,第2題 進(jìn)一步鞏固所學(xué)的知識(shí)。 【高中數(shù)學(xué)優(yōu)秀教案】相關(guān)文章: 高中數(shù)學(xué)優(yōu)秀教案模板11-12 高中數(shù)學(xué)優(yōu)秀教案設(shè)計(jì)精選09-16 高中數(shù)學(xué)必修5優(yōu)秀教案12-12 高中數(shù)學(xué)優(yōu)秀教案(精選12篇)08-13 高中數(shù)學(xué)必修5教案優(yōu)秀03-11 高中數(shù)學(xué)優(yōu)秀教案 18
高中數(shù)學(xué)優(yōu)秀教案 19
高中數(shù)學(xué)優(yōu)秀教案 20
高中數(shù)學(xué)優(yōu)秀教案 21
高中數(shù)學(xué)優(yōu)秀教案 22
高中數(shù)學(xué)優(yōu)秀教案 23
高中數(shù)學(xué)優(yōu)秀教案 24
高中數(shù)學(xué)優(yōu)秀教案 25
高中數(shù)學(xué)優(yōu)秀教案 26